Формула для радиуса вписанной окружности равнобедренной трапеции

Радиус вписанной окружности в трапецию, формула

Радиус вписанной окружности в трапецию равен половине высоты трапеции.

Главное чтобы выполнялось условие при котором в данную трапецию возможно вписать окружность. В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.:

Иначе в данную трапецию нельзя вписать окружность.

бедро трапеции выражается через высоту по теореме Пифагора:

Отсюда — зная все стороны трапеции вычислим такую высоту трапеции, которая удовлетворяет условию вписанной окружности (3).

после небольших преобразований получим

используем формулы Квадрат суммы и Квадрат разности и после раскрытия скобок и упрощения получим

И соответственно радиус вписанной окружности в трапецию

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Радиус вписанной окружности в трапецию

Формула для радиуса вписанной окружности равнобедренной трапеции

с — нижнее основание

b — верхнее основание

a — боковые стороны

h — высота

Формула радиуса вписанной окружности равнобочной трапеции ( r ):

Формула для радиуса вписанной окружности равнобедренной трапеции

Калькулятор — вычислить, найти радиус вписанной окружности в равнобочную трапецию

Видео:Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Формула для радиуса вписанной окружности равнобедренной трапеции
Рис.1

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) — равен полуразности оснований:

AP =BC + AD
2
PD =AD — BC
2

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

b = a — 2 h ctg α = a — 2 c cos α

c =h=a — b
sin α2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a =d 1 2 — c 2b =d 1 2 — c 2c = √ d 1 2 — ab
ba

3. Формулы длины основ через площадь, высоту и другую основу:

a =2S— b b =2S— a
hh

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с =S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с =2S
( a + b ) sin α

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

m = a — h ctg α = b + h ctg α = a — √ c 2 — h 2 = b + √ c 2 — h 2

2. Формула средней линии трапеции через площадь и сторону:

m =S
c sin α

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h =1√ 4 c 2 — ( a — b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h =a — btg β= c sin β
2

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

d 1 = √ a 2 + c 2 — 2 ac cos α

d 1 = √ b 2 + c 2 — 2 bc cos β

4. Формула длины диагонали через высоту и основания:

d 1 =1√ 4 h 2 + ( a + b ) 2
2

Видео:Задача 6 №27926 ЕГЭ по математике. Урок 141Скачать

Задача 6 №27926 ЕГЭ по математике. Урок 141

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

1. Формула площади через стороны:

S =a + b√ 4 c 2 — ( a — b ) 2
4

2. Формула площади через стороны и угол:

S = ( b + c cos α ) c sin α = ( a — c cos α ) c sin α

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S =4 r 2=4 r 2
sin αsin β

4. Формула площади через основания и угол между основой и боковой стороной:

S =ab=ab
sin αsin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S =d 1 2· sin γ=d 1 2· sin δ
22

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

8. Формула площади через основания и высоту:

S =a + b· h
2

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📹 Видео

1742. Названия основных геометрических фигур на иврите: мэшулаш, рибУа, мэруба, мэуйан, кадурСкачать

1742. Названия основных геометрических фигур на иврите: мэшулаш, рибУа, мэруба, мэуйан, кадур

Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2
Поделиться или сохранить к себе: