О чем эта статья:
Видео:Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, тоСкачать
Определение параллелограмма
Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:
Частные случаи параллелограмма: ромб, прямоугольник, квадрат.
Диагонали — отрезки, которые соединяют противоположные вершины.
Свойства диагоналей параллелограмма:
- В параллелограмме точка пересечения диагоналей делит их пополам.
- Любая диагональ параллелограмма делит его на два равных треугольника.
- Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.
Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.
Свойства биссектрисы параллелограмма:
- Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
- Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
- Отрезки биссектрис противоположных углов равны и параллельны.
Как найти площадь параллелограмма:
- S = a × h, где a — сторона, h — высота.
- S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
- Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
Периметр параллелограмма — сумма длины и ширины, умноженная на два.
P = 2 × (a + b), где a — ширина, b — высота.
У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!
Видео:Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равныСкачать
Свойства параллелограмма
Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.
Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:
- Противоположные стороны параллелограмма равны.
ABCD — параллелограмм, значит, AB = DC, BC = AD. - Противоположные углы параллелограмма равны.
ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D. - Диагонали параллелограмма точкой пересечения делятся пополам.
ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC. - Диагональ делит параллелограмм на два равных треугольника.
ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA. - Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
ABCD — параллелограмм, значит, ∠A + ∠D = 180°. - В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
А сейчас докажем теорему, которая основана на первых двух свойствах.
Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.
В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.
Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:
- AB = CD как противоположные стороны параллелограмма.
- ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
- Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
- CO = AO
- BO = DO
Теорема доказана. Наше предположение верно.
Видео:8 класс, 4 урок, ПараллелограммСкачать
Признаки параллелограмма
Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.
Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Докажем 1 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
- AB || CD
- AB = CD
Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.
Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.
Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:
- AC — общая сторона;
- По условию AB = CD;
- ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.
Шаг 3. Из равенства треугольников также следует:
Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.
Вот так быстро мы доказали первый признак.
Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Докажем 2 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
- AB = CD
- BC = AD
Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:
- AC — общая сторона;
- AB = CD по условию;
- BC = AD по условию.
Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.
Шаг 3. Из равенства треугольников следует:
А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.
Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.
Доказали второй признак.
Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Докажем 3 признак параллелограмма:
Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:
- CO = OA;
- DO = BO;
- углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.
Шаг 2. Из равенства треугольников следует, что CD = AB.
Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).
Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.
Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
Признаки параллелограмма
1 0 . Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм. |
Доказательство:
Дано: АВСD — четырехугольник, АD = ВС, АDВС.
Доказать: АВСD — параллелограмм.
Доказательство:
1. Проведем диагональ АС четырехугольника АВСD.
2. Рассмотрим АВС и АDС: АС — общая, 1 =3 (т.к. по условию АDВС, 1 и 3 накрест лежащие углы при пересечении параллельных прямых АD и BC секущей АС), АВС =АDС (по 1 признаку равенства треугольников), АВ = DC и 2 = 4. Но 2 и 4 накрест лежащие углы при пересечении прямых АВ и DС секущей АС, АВDС.
3. Итак, АDВС и АВDС, т.е. в четырехугольнике АВСD противоположные стороны попарно параллельны, четырехугольник АВСD — параллелограмм. Что и требовалось доказать.
2 0 . Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. |
Доказательство:
Дано: АВСD — четырехугольник, АВ = DС, АD = ВC.
Доказать: АВСD — параллелограмм.
Доказательство:
1. Проведем диагональ АС четырехугольника АВСD.
2. Рассмотрим АВС и АDС: АС — общая, по условию АВ = DС, АD = ВC, АВС =АDС (по 3 признаку равенства треугольников), 1 = 2, при этом 1 и 2 накрест лежащие при пересечении прямых АD и ВC секущей АС, по признаку параллельности двух прямых АDВС.
3. Итак, АD = ВC, АDВС, по 1 0 признаку параллелограмма, четырехугольник АВСD — параллелограмм. Что и требовалось доказать.
3 0 . Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник параллелограмм. |
Доказательство:
Дано: АВСD — четырехугольник, АС и DВ диагонали, АС ∩ DВ = О, АО = ОС, DО = ОВ.
Доказать: АВСD — параллелограмм.
Доказательство:
1. Рассмотрим АОD и ВОС: по условию АО = ОС, DО = ОВ, АОD и ВОС (как вертикальные углы), АОD =ВОС (по 1 признаку равенства треугольников), АD = ВC и 1 = 2.
2. 1 и 2 накрест лежащие при пересечении прямых АD и ВC секущей АС, при этом 1 = 2, по признаку параллельности двух прямых АDВС.
3. Итак, АD = ВC, АDВС, по 1 0 признаку параллелограмма, четырехугольник АВСD — параллелограмм. Что и требовалось доказать.
Поделись с друзьями в социальных сетях:
Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Параллелограмм
Определение
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Теорема (первый признак параллелограмма)
Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм.
Доказательство
Пусть в четырехугольнике (ABCD) стороны (AB) и (CD) параллельны и (AB = CD) .
Проведём диагональ (AC) , разделяющую данный четырехугольник на два равных треугольника: (ABC) и (CDA) . Эти треугольники равны по двум сторонам и углу между ними ( (AC) – общая сторона, (AB = CD) по условию, (angle 1 = angle 2) как накрест лежащие углы при пересечении параллельных прямых (AB) и (CD) секущей (AC) ), поэтому (angle 3 = angle 4) . Но углы (3) и (4) накрест лежащие при пересечении прямых (AD) и (BC) секущей (AC) , следовательно, (ADparallel BC) . Таким образом, в четырехугольнике (ABCD) противоположные стороны попарно параллельны, и, значит, четырехугольник (ABCD) – параллелограмм.
Теорема (второй признак параллелограмма)
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.
Доказательство
Проведём диагональ (AC) данного четырехугольника (ABCD) , разделяющую его на треугольники (ABC) и (CDA) .
Эти треугольники равны по трем сторонам ( (AC) – общая, (AB = CD) и (BC = DA) по условию), поэтому (angle 1 = angle 2) – накрест лежащие при (AB) и (CD) и секущей (AC) . Отсюда следует, что (ABparallel CD) . Так как (AB = CD) и (ABparallel CD) , то по первому признаку параллелограмма четырёхугольник (ABCD) – параллелограмм.
Теорема (третий признак параллелограмма)
Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.
Доказательство
Рассмотрим четырехугольник (ABCD) , в котором диагонали (AC) и (BD) пересекаются в точке (O) и делятся этой точкой пополам.
Треугольники (AOB) и (COD) равны по первому признаку равенства треугольников ( (AO = OC) , (BO = OD) по условию, (angle AOB = angle COD) как вертикальные углы), поэтому (AB = CD) и (angle 1 = angle 2) . Из равенства углов (1) и (2) (накрест лежащие при (AB) и (CD) и секущей (AC) ) следует, что (ABparallel CD) .
Итак, в четырехугольнике (ABCD) стороны (AB) и (CD) равны и параллельны, значит, по первому признаку параллелограмма четырехугольник (ABCD) – параллелограмм.
Свойства параллелограмма:
1. В параллелограмме противоположные стороны равны и противоположные углы равны.
2. Диагонали параллелограмма точкой пересечения делятся пополам.
Свойства биссектрисы параллелограмма:
1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
2. Биссектрисы смежных углов параллелограмма пересекаются под прямым углом.
3. Отрезки биссектрис противоположных углов равны и параллельны.
Доказательство
1) Пусть (ABCD) – параллелограмм, (AE) – биссектриса угла (BAD) .
Углы (1) и (2) равны как накрест лежащие при параллельных прямых (AD) и (BC) и секущей (AE) . Углы (1) и (3) равны, так как (AE) – биссектриса. В итоге (angle 3 = angle 1 = angle 2) , откуда следует, что треугольник (ABE) – равнобедренный.
2) Пусть (ABCD) – параллелограмм, (AN) и (BM) – биссектрисы углов (BAD) и (ABC) соответственно.
Так как сумма односторонних углов при параллельных прямых и секущей равна (180^) , тогда (angle DAB + angle ABC = 180^) .
Так как (AN) и (BM) – биссектрисы, то (angle BAN + angle ABM = 0,5(angle DAB + angle ABC) = 0,5cdot 180^circ = 90^) , откуда (angle AOB = 180^circ — (angle BAN + angle ABM) = 90^circ) .
3. Пусть (AN) и (CM) – биссектрисы углов параллелограмма (ABCD) .
Так как в параллелограмме противоположные углы равны, то (angle 2 = 0,5cdotangle BAD = 0,5cdotangle BCD = angle 1) . Кроме того, углы (1) и (3) равны как накрест лежащие при параллельных прямых (AD) и (BC) и секущей (CM) , тогда (angle 2 = angle 3) , откуда следует, что (ANparallel CM) . Кроме того, (AMparallel CN) , тогда (ANCM) – параллелограмм, следовательно, (AN = CM) .
📹 Видео
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Геометрия Признак параллелограмма: Если в четырех угольнике каждые две противолежащие стороны равныСкачать
8 класс, 5 урок, Признаки параллелограммаСкачать
Доказательство первого признака параллелограммаСкачать
ПАРАЛЛЕЛОГРАММ и его свойства. §2 геометрия 8 классСкачать
Признак параллелограмма (второй), 8 классСкачать
Геометрия 8 класс (Урок№2 - Параллелограмм.)Скачать
В параллелограмме противоположные углы равны 8кл теоремаСкачать
Геометрия 8 класс. Параллелограмм, свойства параллелограммаСкачать
Задание 25 Доказать, что четырёхугольник параллелограмм Определение параллелограммаСкачать
Геометрия Докажите, что если в четырех угольнике каждые два противолежащих угла равны, то этотСкачать
Свойства параллелограмма. 8 класс.Скачать
Противоположные стороны параллелограмма равны 8 клСкачать
Параллелограмм и вся его семейкаСкачать
Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать