Свойства
- Сумма углов четырехугольника равна 360°.
∠A + ∠B + ∠C + ∠D = 360°. - Если четырехугольник правильный, то каждый угол по 90°
и этот четырехугольник является квадратом.
∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
ABCD — квадрат. - Сумма противоположных углов четырехугольника равна 180°,
если около четырехугольника описана окружность.
∠A + ∠С = ∠В + ∠D = 180°.
Такие четырехугольники называют вписанными.
Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.
Видео:Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||
Окружность, описанная около ромба | ||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||
Окружность, описанная около трапеции | ||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||
Окружность, описанная около дельтоида | ||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||
Произвольный вписанный четырёхугольник | ||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Сумма углов четырехугольника | Математика 8 класс | Четырехугольник | Геометрия 8 классСкачать
Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противоположных углов равна 180 градусов
Вписанные углы А и С четырехугольника АВСD на рисунке опираются на дуги ВСD и BAD, сумма которых равна 360 градусов. Значит, сумма углов А и С равна .
Докажем обратное утверждение.
Пусть сумма углов А и С четырехугольника АВСD равна 180°. Докажем, что точки А, В, С и D лежат на одной окружности.
Вокруг любого треугольника можно описать окружность, причем только одну. Опишем окружность вокруг треугольника АВD. Мы не знаем пока, лежит ли точка С на этой окружности. Значит, С может лежать на этой окружности, или внутри нее, или вне окружности.
Предположим, что точка С лежит внутри окружности, описанной вокруг треугольника АВD. Продолжим отрезок ВС до пересечения с окружностью в точке .
Так как четырехугольник вписан в окружность, сумма его противоположных углов равна 180°. Это мы доказали. Значит, .
По условию, . Значит
Угол – смежный с углом ВСD, Тогда в треугольнике сумма углов и равна 180°. Такой треугольник не может существовать, поскольку угол D в нем равен нулю. Значит, точка С не может лежать внутри окружности, описанной вокруг треугольника ABD.
Аналогично доказывается, что С не может лежать и вне этой окружности. Остается случай, когда точки А, В, С и D лежат на одной окружности.
И это значит, что ABCD вписан в окружность.
Задачи ЕГЭ по теме «Вписанный четырехугольник»
1. Угол A четырехугольника ABCD, вписанного в окружность, равен . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Величина угла С равна
2. Два угла вписанного в окружность четырёхугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Больший из оставшихся углов лежит напротив меньшего из указанных в условии, и он равен .
💥 Видео
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Суммы противоположных углов четырехугольника, вписанного в окружность, равны 180 градусов #репетиторСкачать
3 правила для вписанного четырехугольника #shortsСкачать
Параллельные прямые | Математика | TutorOnlineСкачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольникСкачать
8 класс, 3 урок, ЧетырехугольникСкачать
Задание 24 Сумма углов четырехугольникаСкачать
Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Чему равна сумма углов выпуклого многоугольникаСкачать
7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать
ПОЧЕМУ СУММА УГЛОВ ЧЕТЫРЁХУГОЛЬНИКА РАВНА 360? #shorts #егэ #огэ #математика #геометрияСкачать
11 класс, 43 урок, Вписанный четырехугольникСкачать
Описанный четырехугольник, сумма противоположных сторонСкачать