Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Выберите неверные утверждения и запишите в ответе их номера.

1) В любой треугольник можно вписать окружность.

2) Если при пересечении двух прямых третьей сумма соответственных углов равна 180°, то прямые всегда параллельны.

3) Каждая из биссектрис равнобедренного треугольника является его медианой.

1) Да, в любой треугольник можно вписать окружность, притом только одну.

2) Нет, если при пересечении двух прямых третьей прямой односторонние углы составляют в сумме 180°, то эти две прямые параллельны.

3) Нет, в равнобедренном треугольнике только биссектриса, проведённая к основанию, является медианой и высотой.

Значит, неверны второе и третье утверждения.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Признаки и свойства параллельных прямых

Видео:Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7Скачать

Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Геометрия. 7 класс

Конспект урока

Признаки параллельности прямых

Перечень рассматриваемых вопросов:

  • Параллельные прямые.
  • Накрест лежащие, соответственные, односторонние углы.
  • Признаки параллельности прямых.
  • Решение задач на доказательство параллельности прямых.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Признаки параллельности двух прямых:

1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже знаете, что при пересечении двух прямых секущей образуются углы:

  • накрест лежащие: 3 и 6, 4 и 5.
  • односторонние: 3 и 5, 4 и 6.
  • соответственные: 1 и 5, 3 и 7, 2 и 6; 4 и 8.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.

Рассмотрим и докажем признаки параллельности прямых.

Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

2 случай: ∠ 1= ∠ 2 ≠ 90°

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.

2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.

Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.

3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.

4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.

Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.

∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.

Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.

∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.

∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.

Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Разбор заданий тренировочного модуля.

Дано: ∠1= 60°, ∠2 = 120°.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

  1. ∠2 и ∠3 смежные, ∠3 = 180° – 120° = 60° по свойству смежных углов;
  2. ∠3 = ∠1, это накрест лежащие углы;
  3. Значит, прямые a и b параллельны по 1 признаку параллельности прямых.

Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.

Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.

Докажите: AB ║ CD.

Если при пересечении двух прямых третьей сумма соответственных углов равна 180 то прямые параллельны

  1. ∠A = ∠C = 60° – углы при основании равнобедренного Δ–ка равны.
  2. ∠BCK и ∠С смежные. ∠BCK = 180° – 60°= 120° – по свойству смежных углов.
  3. ∠BCD = ∠CDK = 60° т. к. CD – биссектриса делит угол пополам.
  4. Значит, ∠A = ∠DCK = 60° ‑ соответственные, следовательно, AB║CD по 2 признаку параллельности прямых.

Ответ: AB║CD по 2 признаку параллельности прямых.

📹 Видео

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Углы при пересечении двух прямых третьейСкачать

Углы при пересечении двух прямых  третьей

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьейСкачать

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьей

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельны

Теорема 14.3 Если соответственные углы равны, то прямые параллельны || Геометрия 7 класс ||Скачать

Теорема 14.3 Если соответственные углы равны, то прямые параллельны || Геометрия 7 класс ||

Задачи на доказательство по геометрии. Признаки параллельности прямых.Скачать

Задачи на доказательство по геометрии. Признаки параллельности прямых.

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонами

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

Теорема о пересечении двух параллельных прямых третьейСкачать

Теорема о пересечении двух параллельных прямых третьей

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210
Поделиться или сохранить к себе: