Согласно определению,геометрическая фигура параллелограмм является четырехугольником с попарно параллельными противоположными сторонами и равными противолежащими углами. Доказать, что фигура параллелограмм позволяет как определение, так и ее признаки. Применяя на практике эти свойства, можно решать геометрические задачи разной сложности.
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Определение параллелограмма
Четырехугольник является параллелограммом с параллельными противоположными сторонами. Эта фигура имеет по 2 тупых и острых угла, произвольную величину которых определяют при решении задач. Для этого используют не только признаки параллелограмма или треугольника, но и таблицу синусов с косинусами.
Квадрат, прямоугольник и ромб — это параллелограммы, обладающие общими свойствами. Фигура, у которой диагонали совпадают с биссектрисами, является ромбом. Согласно определению, прямоугольник — это четырехугольник, имеющий все прямые углы. Если стороны этой фигуры равны между собой, то прямоугольник является квадратом.
Параллелограмм — геометрическая фигура с равными противоположными сторонами. Если каждую из них возвести в квадрат и сложить их между собой, то полученная величина будет равна сумме квадратов диагоналей, проведенных через противоположные вершины углов фигуры. Диагонали этого четырехугольника пересекаются в точке, определить которую позволяют прямоугольные координаты.
Видео:Задание 25 Доказать, что четырёхугольник параллелограмм Определение параллелограммаСкачать
Свойства фигуры
Зная различные свойства четырехугольников, можно решать простые и сложные задачи по геометрии, начиная с определения периметра, заканчивая нахождением координаты вершины параллелограмма. Для решения задач используют 7 основных свойств параллелограмма, учитывая что его стороны попарно образуют:
- смежные углы, сумма которых составляет 180 градусов;
- равные отрезки;
- одинаковые по величине противоположные углы;
- четырехугольник, сумма углов которого равна 360 градусов;
- фигуру, диагонали которой пересекаются в точке, разделяющей их на 2 равных отрезка;
- равнобедренный треугольник, одна из сторон которого является биссектрисой фигуры;
- симметричные фигуры, дополняемые линией, проходящей через точку пересечения диагоналей.
Доказать последнее свойство позволяет II признак равенства треугольников. Известен отрезок, принадлежащий линии, проведенной через точку, в которой пересекаются диагонали. В четырехугольнике КМРТ он обозначен НП. Отсюда следует равенство треугольников КОП и НОР, поэтому НО=ОП.
Сумма смежных углов параллелограмма составляет 180 градусов, поскольку они являются односторонними при параллельных прямых. Существует свойство равенства острого угла и образованного высотами тупого угла четырехугольника АВСД. Параллелограмм имеет смежные углы А и Д, а высоты ВМ и ВН проведены из вершины В, поэтому угол МВН в сумме с Д равен 180 градусам.
Доказательство равенства противолежащих сторон и углов фигуры заключается в следующем. Например, диагонали ABCD делят фигуру на 2 равных треугольника, имеющих общую сторону в виде диагонали BD. При этом углы ADВ и ABC при противолежащих вершинах A и C являются накрест лежащими.
Параллелограмм состоит из равных треугольников ABD, BCD и ABC, ACD, образуемых диагоналями AC и ВD, значит AB=CD и AD=BC. Отсюда углы при вершинах A и C, В и D имеют одинаковую величину.
Свойства можно представить в виде формул для решения уравнений и примеров, а также доказать теоретически. Их следует запомнить, чтобы правильно применять на практике. Для решения более сложных задач по геометрии следует доказать основные свойства фигуры.
Видео:№950. Докажите, что четырехугольник MNPQ является параллелограммом,Скачать
Основные признаки
Существует 5 признаков параллелограмма, доказательство которых основано на свойствах прямых и образованных ими углов либо фигур. Выпуклый четырехугольник, вершины которого обозначены МНКП, имеет диагонали МП и НК. Признаки того, что фигура МНКП представляет собой параллелограмм, следующие:
- попарное равенство противоположных сторон: МН=КП и НК=МП;
- попарное равенство противоположных углов: МНК=КПМ и НКП=НМП;
- равенство и параллельность противоположных сторон: МН=КП и МН||КП;
- пересечение диагоналей в точке, которая делит их пополам;
- МН2 + КП2 = МН2 + НК2 + КП2 + МП2
Если четырехугольник имеет 2 равные и параллельные стороны, то он представляет собой параллелограмм. Четырехугольник MNPK имеет параллельные и равные MN и KP, отсюда следует доказательство I признака:
Если четырехугольник имеет противоположные стороны, которые равны попарно, то он является параллелограммом. Перед тем как доказать, что фигура является параллелограммом, следует провести диагонали. Пошаговое доказательство II признака:
Доказать деление точкой пересечения каждой из диагоналей фигуры АМКД на равные отрезки позволяет II признак равенства треугольников. При этом AОД и КОМ равны. Следовательно, AО=КО и АО=ДО.
Согласно III признаку, четырехугольник, диагонали которого пересекаются, а точка пересечения делит их пополам, представляет собой параллелограмм. В четырехугольнике MNPQ она обозначена буквой К. Поскольку в ней пересекаются диагонали MP и NQ, то образуемые ими треугольники MNК и КPQ равны по I признаку. Это следует из равенства вертикальных углов MКN и PКQ, а также MК и NК, КP и КQ, которые равны по условию.
В треугольниках MNК и КPQ стороны MN и PQ равны между собой. Углы NMК и КPQ равны как накрест лежащие при MN и PQ и секущей MP. Отсюда следует, что прямые MN||PQ. Итак, четырехугольник MNPQ — это параллелограмм по I признаку, поскольку MN и PQ равны и параллельны.
Видео:Геометрия Четырехугольник ABCD и AMKD – параллелограммы (см. рис.). Докажите, что четырехугольникСкачать
Пошаговое доказательство
Перед тем как доказать, что четырехугольник параллелограмм, нужно провести высоты треугольников МНК и МПК, пересекающие МК в точках О и С. По данным задачи, МНК, МПК и НПК имеют одинаковые площади. Доказательство параллельности МК и НП состоит из следующих шагов:
Чтобы доказать, что МН и ПК параллельны, нужно опустить из вершин треугольников МНК и НКП высоты Н и П, которые пересекут прямую ПК в точках Р и Т. По построению НР=ПТ, а по указанному условию площади треугольников МНК и НПК совпадают. Сторона МН параллельна ПК, следовательно, МНПК — параллелограмм. Итак, порядок доказательства параллельности МН и ПК аналогичен с доказательством, что МК и НП параллельны.
Доказательство признака образования равнобедренного треугольника и трапеции при пересечении противолежащей стороны параллелограмма биссектрисой АМ одного из углов состоит из следующих утверждений:
Зная, как доказать, что фигура параллелограмм, если известно, что 2 из его сторон равны и параллельны, можно использовать I признак равенства для доказательства другого. Согласно II признаку, стороны параллелограмма попарно равны между собой.
Видео:Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать
Как доказать, что четырехугольник — параллелограмм
Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
Например, это могут быть пары треугольников
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных способа доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие способы доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с помощью векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
Видео:№770. Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если:Скачать
Доказать что четырехугольник параллелограмм через векторы
Докажите, что если диагонали четырёхугольника точкой пересечения делятся пополам, то этот четырёхугольник — параллелограмм.
Решение . Заметим, что и тем самым, так как и векторы и коллинеарны.
Аналогично, коллинеарны векторы и при и Тогда четырёхугольник ABCD — параллелограмм, так как его противоположные стороны попарно параллельны.
Докажите, что средние линии любого четырёхугольника точкой пересечения делятся пополам.
Решение . Пусть дан произвольный четырёхугольник ABCD, точки M, N, P и Q — середины его сторон AB, BC, CD и AD соответственно. Введём векторы как показано на рисунке: пусть а Ясно, что по правилу сложения векторов
Выразим векторы и через векторы и
Пусть O — середина MP, тогда
По правилу сложения векторов таким образом, подставляя выражение этих векторов через векторы и окончательно получим:
Таким образом, убедились, что середина MP является серединой NQ, а значит, точкой пе-ресечения эти отрезки делятся пополам.
Следствие. Заметим, что четырёхугольник MNPQ является параллелограммом. Такой параллелограмм называется параллелограммом Вариньона.
Сформулируем важное свойство четырёхугольников: для того, чтобы четырёхугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.
Докажите, что четырёхугольник является параллелограммом тогда и только тогда, когда отрезки, соединяющие середины его противоположных сторон, проходят через точку пересечения диагоналей.
Решение . Пусть дан произвольный четырёхугольник ABCD, диагонали которого пересекаются в одной точке со средними линиями. Введём обозначения, как показано на рисунке. По правилу сложения векторов имеем: и Тогда а значит, Аналогично для следовательно, тем самым, Получается, две стороны четырёхугольника равны и параллельны, а значит, ABCD — параллелограмм.
🎬 Видео
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать
№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать
Доказательство первого признака параллелограммаСкачать
№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать
Сложение векторов. Правило параллелограмма. 9 класс.Скачать
№748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?Скачать
Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Признаки параллелограмма Доказательство признаков параллелограммаСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Как доказать свойства параллелограмма с использованием методов векторной алгебры?Скачать
№567. Докажите, что середины сторон произвольного четырехугольника являютсяСкачать
№750. Докажите, что если векторы АВ и СD равны, то середины отрезков AD и ВС совпадают.Скачать