Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны

ДОСТАТОЧНОЕ УСЛОВИЕ

ДОСТАТОЧНОЕ УСЛОВИЕ для выполнения какого-либо верного утвержде ния (предложения, суждения) — всякое условие, из которого следует это утвер ждение. Например, для делимости целого многозначного числа на 4 достаточным условием является окончание этого числа по крайней мере двумя нулями. Но это условие — равенство двух последних цифр целого числа нулю — не является необходимым условием для делимости целого числа на 4. Однако можно указать такое условие делимости цедрго многозначного числа на 4, которое будет и необходимым и достаточным; это условие состоит в том, что двузначное число, на которое оканчивается многозначное число, должно делиться на 4. Действительно, если двузначное число, на которое оканчивается многозначное число, делится на 4, то и все многозначное число делится на 4, и обратно — верно, если многозначное число делится на 4, то и двузначное число, на которое оно оканчивается, делится на 4.
Достаточное условие является одним из важнейших понятий математики и часто встречается в формулировках теорем наряду с необходимым условием. Достаточное условие называется также достаточным признаком для выполнения какого-либо верного утверждения. Для выполнения какого-либо утверждения можно указать не один, а несколько достаточных условий. Например, для того чтобы выпуклый четырехугольник был параллелограммом, достаточно одного из условий: 1) чтобы любые две его противоположные стороны были равны и параллельны друг другу; 2) чтобы в точке пересечения его диагонали делились пополам; 3) чтобы этот четырехугольник имел центр симметрии. См. также Необходимое условие, Критерий, Теорема.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

ГДЗ учебник по алгебре 8 класс Мерзляк, Полонский, Якир. §14. Упражнения. Номер №459

Вместо точек поставьте слово «необходимо» или «достаточно», чтобы образовалось верное утверждение:
1 ) для того чтобы треугольник был равносторонним, . чтобы два его угла были равны;
2 ) для того чтобы четырехугольник был параллелограммом, . чтобы две его стороны были параллельны;
3 ) для того чтобы число делилось нацело на 3, . чтобы оно делилось нацело на 9 ;
4 ) для того чтобы последняя цифра десятичной записи числа была нулем, . чтобы число было кратным 5 .

Решение 1

Для того чтобы треугольник был равносторонним, достаточно, чтобы два его угла были равны.

Решение 2

Для того чтобы четырехугольник был параллелограммом, необходимо, чтобы две его стороны были параллельны.

Решение 3

Для того чтобы число делилось нацело на 3, достаточно, чтобы оно делилось нацело на 9 .

Решение 4

Для того чтобы последняя цифра десятичной записи числа была нулем, необходимо, чтобы число было кратным 5 .

Видео:Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.

Виды теорем

Рассмотрим, например, теорему «если четырехугольник является прямоугольником, то в нем диагонали равны». Построим предложение, обратное данному: «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником». Это ложное высказывание, в чем легко убедиться (в равнобедренной трапеции диагонали равны, но трапеция не является прямоугольником).

Рассмотрим теорему «в равнобедренном треугольнике углы при основании равны». Обратное ей предложение таково: «если в треугольнике углы при основании равны, то этот треугольник – равнобедренный». Это истинное предложение и потому является теоремой. Ее называют теоремой, обратной данной.

Для любой теоремы вида АДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныВ (если А, то В) можно сформулировать предложение Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны(если не А, то не В), которое называют противоположным данному. Но это предложение также не всегда является теоремой. Например, предложение, противоположное теореме «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником» будет ложным: «если четырехугольник не является прямоугольником, то в нем диагонали не равны».

В том случае, если предложение, противоположное данному, будет истинно, его называют теоремой, противоположной данной.

Для всякой теоремы вида АДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныВ (если А, то В) можно сформулировать предложение Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны(если не В, то не А), которое называют обратным противоположному. Например, для теоремы «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником» предложение, обратное противоположному, будет таким: «если в четырехугольнике диагонали не равны, то он не является прямоугольником». Это, как известно, предложение истинное, и, следовательно, является теоремой, обратно противоположной данной.

Вообще, для какой бы теоремы мы ни формулировали предложение, обратное противоположному, оно всегда будет теоремой, потому что имеется следующая равносильность: ( АДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныВ) Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны(Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельны).

Эту равносильность называют законом контрапозиции.

Теоремы АДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныВ и ВДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныАвзаимообратные, а АДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныВ и Для того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельныДля того чтобы четырехугольник был параллелограммом чтобы две его стороны были параллельнывзаимопротивоположные.

1. В следующих теоремах выделим условие и заключение: а) «Для того чтобы разность двух чисел делилась на 2, достаточно, чтобы на 2 делилось уменьшаемое и вычитаемое»;

б) «Для того чтобы четырехугольник был квадратом, необходимо, чтобы хоты бы один из его углов был прямым».

Решение: а) Слово достаточно относится к предложению «уменьшаемое и вычитаемое делится на 2», следовательно, это предложение и является условием теоремы. Тогда заключение теоремы – «разность двух чисел делится на 2».

б) В данной теореме есть слово «необходимо», которое относится к предложению «чтобы четырехугольник был квадратом». Значит, это и будет условием данной теоремы. А ее заключением в таком случае будет предложение «один из углов четырехугольника прямой».

2. Сформулируем следующие теоремы в виде «если …, то …»:
а) «Перпендикуляр к одной из двух параллельных прямых также перпендикуляр к другой»; б) «Всякий параллелограмм имеет центр симметрии».

Решение: а) Выделим условие и заключение теоремы: «Перпендикуляр к одной из двух параллельных прямых» – условие, «перпендикуляр к другой» – заключение. Тогда теорема примет вид: «Если есть перпендикуляр к одной из двух параллельных прямых, то он является также перпендикуляром к другой прямой».

б) Условие теоремы – «всякий параллелограмм», заключение – «имеет центр симметрии». Нашу теорему тогда можно переформулировать следующим образом: «Если фигура параллелограмм, то она имеет центр симметрии».

3. Дана теорема: «Если в четырехугольнике две противоположные стороны равны и параллельны, то четырехугольник параллелограмм». Сформулируем предложения, являющиеся обратным, противоположным и обратно противоположным.

Решение: Выделим условие и заключение данной теоремы. Условие: «в четырехугольнике две противоположные стороны равны и параллельны». Заключение: «четырехугольник – параллелограмм».

Поменяв местами условие и заключение, получим теорему, обратную данной: «Если четырехугольник – параллелограмм, то две противоположные стороны равны и параллельны», так как данное предложение истинно.

Заменяя условие и заключение исходной теоремы их отрицаниями, получим теорему, противоположную данной: «Если в четырехугольнике две противоположные стороны не равны или не параллельны, то четырехугольник – не параллелограмм». Это предложение также истинно.

Меняя местами отрицание условия и отрицание заключения, получим истинное предложение, которое является обратно противоположной теоремой: «Если четырехугольник – не параллелограмм, то две противоположные стороны не равны или не параллельны».

📽️ Видео

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Геометрия Признак параллелограмма: Если в четырех угольнике каждые две противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырех угольнике каждые две противолежащие стороны равны

8 класс, 5 урок, Признаки параллелограммаСкачать

8 класс, 5 урок, Признаки параллелограмма

Задача 6 №27612 ЕГЭ по математике. Урок 62Скачать

Задача 6 №27612 ЕГЭ по математике. Урок 62

Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать

Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрии

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равны

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1Скачать

8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать

Параллелограмм. Практическая часть - решение задачи. 8 класс.

Доказательство первого признака параллелограммаСкачать

Доказательство первого признака параллелограмма

ПАРАЛЛЕЛОГРАММ и его свойства. §2 геометрия 8 классСкачать

ПАРАЛЛЕЛОГРАММ и его свойства. §2 геометрия 8 класс

ЧетырехугольникиСкачать

Четырехугольники

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Какой четырехугольник называется параллелограммом? Геометрия 8 класс. Глава 5Скачать

Какой четырехугольник называется параллелограммом? Геометрия 8 класс. Глава 5
Поделиться или сохранить к себе: