Модуль линейной скорости тела движущегося по окружности

Модуль линейной скорости тела движущегося по окружности

Задание 6. Чему равен модуль линейной скорости автомобиля, движущегося по окружности радиусом 40 м с ускорением 2,5 м/с2?

Из формулы центростремительного ускорения:

Модуль линейной скорости тела движущегося по окружности

выразим линейную скорость движения:

Модуль линейной скорости тела движущегося по окружностим/с

Модуль линейной скорости тела движущегося по окружности

  • Вариант 1
  • Вариант 1. Задания ОГЭ 2022. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 2
  • Вариант 2. Задания ОГЭ 2022. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 3
  • Вариант 3. Задания ОГЭ 2022. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 4
  • Вариант 4. Задания ОГЭ 2022. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 5
  • Полностью совпадает с Вариант 1. Задания ОГЭ 2021. Физика. Е.Е. Камзеева. 30 вариантов
  • Вариант 6
  • Полностью совпадает с Вариант 2. Задания ОГЭ 2021. Физика. Е.Е. Камзеева. 30 вариантов
  • Внимание! Нумерация заданий в сборнике 2021 отличается от сборника 2020

  • Модуль линейной скорости тела движущегося по окружности
  • Вариант 7
  • Полностью совпадает с Вариант 1. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 8
  • Полностью совпадает с Вариант 5. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 1
    • 19
    • 21
  • Вариант 9
  • Полностью совпадает с Вариант 6. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 1
    • 2
    • 19
    • 21
  • Вариант 10
  • Полностью совпадает с Вариант 7. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 11
  • Полностью совпадает с Вариант 19. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 12
  • Полностью совпадает с Вариант 20. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 13
  • Полностью совпадает с Вариант 21. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 2
    • 19
    • 21
  • Вариант 14
  • Полностью совпадает с Вариант 22. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 15
  • Полностью совпадает с Вариант 23. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 16
  • Полностью совпадает с Вариант 24. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 17
  • Полностью совпадает с Вариант 25. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 18
  • Полностью совпадает с Вариант 26. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 19
  • Полностью совпадает с Вариант 27. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 20
  • Полностью совпадает с Вариант 28. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 21
  • Полностью совпадает с Вариант 8. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 22
  • Полностью совпадает с Вариант 10. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 21
  • Вариант 23
  • Полностью совпадает с Вариант 11. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 24
  • Полностью совпадает с Вариант 12. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 25
  • Полностью совпадает с Вариант 13. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 26
  • Полностью совпадает с Вариант 14. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 27
  • Полностью совпадает с Вариант 15. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 21
  • Вариант 28
  • Полностью совпадает с Вариант 16. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 29
  • Полностью совпадает с Вариант 17. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21
  • Вариант 30
  • Полностью совпадает с Вариант 18. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Кроме заданий:
    • 19
    • 21

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Равномерное движение тела по окружности

Модуль линейной скорости тела движущегося по окружности

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​ ( T ) ​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​ ( [,T,] ) ​ = 1 с.

Частота обращения ​ ( (n) ) ​ — число полных оборотов тела за одну секунду: ​ ( n=N/t ) ​. Единица частоты обращения — ( [,n,] ) = 1 с -1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​ ( n=1/T ) ​.

Пусть некоторое тело, движущееся по окружности, за время ​ ( t ) ​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​ ( varphi ) ​.

Модуль линейной скорости тела движущегося по окружности

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​ ( omega ) ​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​ ( omega=varphi/t ) ​. Единица угловой скорости — радиан в секунду, т.е. ​ ( [,omega,] ) ​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​ ( 2pi ) ​. Поэтому ​ ( omega=2pi/T ) ​.

Линейная скорость тела ​ ( v ) ​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​ ( vec=l/t ) ​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​ ( vec=2pi!R/T ) ​. Связь между линейной и угловой скоростью выражается формулой: ​ ( v=omega R ) ​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​ ( vec=frac<Deltavec> ) ​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​ ( a=frac ) ​. Так как ​ ( v=omega R ) ​, то ​ ( a=omega^2R ) ​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​ ( R_1 ) ​ от центра вращающегося колеса, равна ​ ( v_1 ) ​. Чему равна скорость ​ ( v_2 ) ​ точки 2, находящейся от центра на расстоянии ​ ( R_2=4R_1 ) ​?

1) ​ ( v_2=v_1 ) ​
2) ​ ( v_2=2v_1 ) ​
3) ​ ( v_2=0,25v_1 ) ​
4) ​ ( v_2=4v_1 ) ​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​ ( T=2pi!Rv ) ​
2) ( T=2pi!R/v ) ​
3) ( T=2pi v ) ​
4) ( T=2pi/v ) ​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​ ( omega=a^2R ) ​
2) ( omega=vR^2 ) ​
3) ( omega=vR )
4) ( omega=v/R ) ​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10 -4 с
4) 5·10 -6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​ ( 1/T ) ​
2) ​ ( v^2/R ) ​
3) ​ ( v/R ) ​
4) ​ ( omega R ) ​
5) ​ ( 1/n ) ​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Модуль линейной скорости тела движущегося по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Модуль линейной скорости тела движущегося по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Модуль линейной скорости тела движущегося по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Модуль линейной скорости тела движущегося по окружности

Количество оборотов выражается следующей формулой:

Модуль линейной скорости тела движущегося по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Модуль линейной скорости тела движущегося по окружности

Видео:угловая и линейная скоростьСкачать

угловая и линейная скорость

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Модуль линейной скорости тела движущегося по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Модуль линейной скорости тела движущегося по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Модуль линейной скорости тела движущегося по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Модуль линейной скорости тела движущегося по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Модуль линейной скорости тела движущегося по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Модуль линейной скорости тела движущегося по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Модуль линейной скорости тела движущегося по окружности

Выражая угловую скорость через частоту, получим:

Модуль линейной скорости тела движущегося по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Модуль линейной скорости тела движущегося по окружности

Сравним две формулы:

Модуль линейной скорости тела движущегося по окружности

Преобразуем формулу линейной скорости и получим:

Модуль линейной скорости тела движущегося по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Модуль линейной скорости тела движущегося по окружности

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Модуль линейной скорости тела движущегося по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Урок 88 (осн). Линейная скорость точки на вращающемся телеСкачать

Урок 88 (осн). Линейная скорость точки на вращающемся теле

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Модуль линейной скорости тела движущегося по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Модуль линейной скорости тела движущегося по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Модуль линейной скорости тела движущегося по окружности

Подставляем известные данные в формулу и вычисляем:

Модуль линейной скорости тела движущегося по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Модуль линейной скорости тела движущегося по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Модуль линейной скорости тела движущегося по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Модуль линейной скорости тела движущегося по окружности

Произведем сокращения и получим:

Модуль линейной скорости тела движущегося по окружности

Модуль линейной скорости тела движущегося по окружности

Модуль линейной скорости тела движущегося по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

📹 Видео

Чему равен модуль линейной скорости автомобиля, движущегося по окружности радиусом 40 м с - №27353Скачать

Чему равен модуль линейной скорости автомобиля, движущегося по окружности радиусом 40 м с  - №27353

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Линейная и угловая скорости при равномерном движении по окружностиСкачать

Линейная и угловая скорости при равномерном движении по окружности

Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Физика Как изменится центростремительное ускорение тела, движущегося по окружности, если модульСкачать

Физика Как изменится центростремительное ускорение тела, движущегося по окружности, если модуль

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное Ускорение

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022Скачать

Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022

Теория. Движение тела по окружности с постоянной по модулю скоростьюСкачать

Теория. Движение тела по окружности с постоянной по модулю скоростью

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Скорость тела, движущегося по окружностиСкачать

Скорость тела, движущегося по окружности

угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 классСкачать

угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 класс

ЕГЭ физика Задание 1#10274Скачать

ЕГЭ физика Задание 1#10274

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.
Поделиться или сохранить к себе: