Треугольники и его элементы

Треугольник и его виды. Элементы треугольника

Треугольник – это геометрическая фигура, состоящая из трех точек, попарно соединенных между собой отрезками. Точки называются вершинами треугольника, отрезки – сторонами треугольника. Треугольник имеет три вершины и три стороны. Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Внутренние углы треугольника – это углы, образованные его сторонами. Угол А – это угол, образованный сторонами АВ и АС.

Виды треугольников по углам:

  1. Остроугольный треугольник – это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).
  2. Прямоугольный треугольник – это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).
  3. Тупоугольный треугольник – это треугольник, у которого один угол тупой (то есть имеет градусную меру больше 90º).

Виды треугольников по сторонам:

  1. Равносторонний треугольник (или правильный треугольник) – это треугольник, у которого все три стороны равны.
  2. Равнобедренный треугольник – это треугольник, у которого две стороны равны.
  3. Разносторонний треугольник – треугольник, все стороны которого имеют разную длину.

Элементы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы, которые пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы.

Биссектриса – это отрезок, делящий угол треугольника на две равные части. Любой треугольник имеет три биссектрисы, которые пересекаются в одной точке.

Высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Любой треугольник имеет три высоты, которые пересекаются в одной точке, называемой ортоцентром треугольника.

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

Треугольники и его элементы

Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине: (MN=frac12AC; MNparallel AC) .

Серединный перпендикуляр к отрезку – прямая, перпендикулярная к этому отрезку и проходящая через его середину. Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

Основные свойства треугольников

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны.
  3. Сумма углов треугольника равна 180º. Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60º.
  4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности (a b – c; b a – c; c a – b).

Один из внешних углов треугольника равен 65 (^circ) . Углы, не смежные с данным внешним углом, относятся как 6:7. Найдите наибольший из них.

Внутренние углы треугольника относятся как 3:7:8. Найдите отношение внешних углов треугольника.

Чему равна градусная мера одного из углов прямоугольного треугольника?

Если в треугольнике один угол больше суммы двух других углов, то он

Если в треугольнике один внешний угол острый, то этот треугольник

Периметр равнобедренного треугольника равен 11 см, а основание равно 3 см. Найдите боковую сторону треугольника.

Содержание
  1. Треугольники
  2. Треугольник — формулы, свойства, элементы и примеры с решением
  3. Что такое треугольник
  4. Определение треугольника
  5. Сумма углов треугольника
  6. Пример №1
  7. Пример №2
  8. О равенстве геометрических фигур
  9. Пример №3
  10. Пример №4
  11. Признаки равенства треугольников
  12. Пример №5
  13. Пример №6
  14. Равнобедренный треугольник
  15. Пример №7
  16. Пример №10
  17. Прямоугольный треугольник
  18. Первый признак равенства треугольников и его применение
  19. Пример №14
  20. Опровержение утверждений. Контрпример
  21. Перпендикуляр к прямой
  22. Перпендикуляр. Расстояние от точки до прямой
  23. Пример №15
  24. Второй признак равенства треугольников и его применение
  25. Решение геометрических задач «от конца к началу»
  26. Пример №16
  27. Пример №17
  28. Признак равнобедренного треугольника
  29. Пример №18
  30. Прямая и обратная теоремы
  31. Медиана, биссектриса и высота треугольника
  32. Свойство медианы, биссектрисы и высоты равнобедренного треугольника
  33. Пример №19
  34. Дополнительные построения в геометрических задачах. Метод удвоения медианы .
  35. Пример №20
  36. Третий признак равенства треугольников и его применение
  37. Пример №21
  38. Свойства и признаки
  39. Признаки параллельности прямых
  40. Пример №22
  41. О существовании прямой, параллельной данной
  42. Свойства углов, образованных при пересечении параллельных прямых секущей.
  43. Пример №23
  44. Расстояние между параллельными прямыми
  45. Сумма углов треугольника
  46. Пример №24
  47. Виды треугольников по величине углов. Классификация
  48. Внешний угол треугольника
  49. Прямоугольные треугольники
  50. Прямоугольный треугольник с углом 30°
  51. Сравнение сторон и углов треугольника
  52. Неравенство треугольника
  53. Пример №25
  54. Справочный материал по треугольнику
  55. Треугольники
  56. Средняя линия треугольника и ее свойства
  57. Пример №26
  58. Треугольник и его элементы
  59. Признаки равенства треугольников
  60. Виды треугольников
  61. Внешний угол треугольника
  62. Прямоугольные треугольники
  63. Всё о треугольнике
  64. Равные треугольники. Высота, медиана, биссектриса треугольника
  65. Первый и второй признаки равенства треугольников
  66. Пример №27
  67. Равнобедренный треугольник и его свойства
  68. Пример №28
  69. Признаки равнобедренного треугольника
  70. Пример №29
  71. Третий признак равенства треугольников
  72. Теоремы
  73. Параллельные прямые. Сумма углов треугольника
  74. Параллельные прямые
  75. Пример №30
  76. Признаки параллельности двух прямых
  77. Пример №31
  78. Пятый постулат Евклида
  79. Пример №34
  80. Прямоугольный треугольник
  81. Пример №35
  82. Свойства прямоугольного треугольника
  83. Пример №36
  84. Пример №37
  85. 📹 Видео

Видео:Треугольник и его элементыСкачать

Треугольник и его элементы

Треугольники

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Треугольники и его элементы

На этом уроке впервые познакомимся с треугольником – важнейшей фигурой геометрии, строить которую в режиме онлайн научит педагог. Вначале дается определение треугольника и его основных элементов: вершин, сторон, углов. Далее рассматривается понятие равных треугольников. В конце урока разбираются задачи, посвященные противолежащим углу сторонам, прилежащим углам, взаимосвязи элементов и расчёта периметра.

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Треугольник — формулы, свойства, элементы и примеры с решением

Содержание:

Треугольники и его элементы:

Определение: Треугольником называется геометрическая фигура, которая состоит из трех точек (вершин треугольника), не лежащих на одной прямой, и трех отрезков (сторон треугольника), попарно соединяющих эти точки.

Треугольник обозначается знаком Треугольники и его элементы

На рисунке 54 изображен треугольник с вершинами А, B, С и сторонами АВ, ВС, АС. Этот треугольник можно обозначить так: Треугольники и его элементы

Треугольники и его элементы

Определение: Углом треугольника ABC при вершине А называется угол ВАС.

Угол треугольника обозначают тремя буквами (например, «угол ABC») или одной буквой, которая указывает его вершину (например, «угол А треугольника ABC »).

Если вершина данного угла треугольника не принадлежит стороне, то говорят, что данный угол противолежащий этой стороне. В противном случае угол является прилежащим к стороне. Так, в треугольнике ABC угол А — прилежащий к сторонам АВ и АС и противолежащий стороне ВС. Стороны и углы треугольника часто называют его элементами

Определение: Периметром треугольника называется сумма всех его сторон.

Периметр — от греческого «пери» — вокруг и «метрео» — измеряю, измеренный вокруг.

Периметр обозначается буквой Р. По определению — Треугольники и его элементыЛюбой треугольник ограничивает часть плоскости. Будем считать, что точки, принадлежащие этой части, расположены внутри треугольника, а точки, которые ей не принадлежат,— вне треугольника.

Роль треугольника в геометрии трудно переоценить. Ученые не зря называют треугольники клетками организма геометрии. Действительно, многие более сложные геометрические фигуры можно разбить на треугольники.

В этой главе мы не только изучим «внутрен нее устройство» треугольников и выделим их виды, но и докажем признаки, по которым можно установить равенство треугольников, сравнивая их стороны и углы. Полученные в ходе наших рассуждений теоремы и соотношения расширят ваши представления об отрезках и углах, параллельности и перпендикулярности прямых на плоскости.

В процессе решения задач и доказательства теорем о свойствах треугольников вам предстоит освоить важные геометрические методы, которые помогут в ходе дальнейшего изучения геометрии.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Что такое треугольник

Рассмотрим понятие треугольника. Пусть на плоскости дана трехзвенная замкнутая ломаная. Тогда эта ломаная разделяет множество оставшихся точек плоскости на ограниченную и неограниченную фигуры. При этом ограниченная фигура называется частью плоскости, ограниченной данной ломаной. Например, на рисунке 59, а изображена часть плоскости, ограниченная трехзвенной замкнутой ломаной ABC.

Определение. Треугольником называется геометрическая фигура, состоящая из трехзвенной замкнутой ломаной и части плоскости, ограниченной этой ломаной.

Вершины ломаной называются вершинами треугольника, а звенья ломаной — сторонами треугольника.

Точки треугольника, не принадлежащие его сторонам, называются внутренними.

Треугольник, вершинами которого являются точки А, В и С, обозначается следующим образом: Треугольники и его элементыАВС (читают: «Треугольник ABC»). Этот же треугольник можно обозначать и так: Треугольники и его элементыBСА или Треугольники и его элементыCАВ.

На рисунке 59, а изображен треугольник ABC. Точки А, В и С — вершины этого треугольника, а отрезки AB, ВС и АС — его стороны. На рисунке 59, B показан треугольник AFD, содержащийся в грани куба.

Треугольники и его элементы

Углы АBС, АСВ и САВ (см. рис. 59, а) называются внутренними углами треугольника ABC или просто углами треугольника. Иногда они обозначаются одной буквой: Треугольники и его элементыA, Треугольники и его элементыB, Треугольники и его элементыC. Стороны и углы треугольника называются его элементами.

На рисунке 59, в изображены треугольники ABC и ACD, у которых общая сторона АС. Угол ВАС — внутренний угол треугольника ВАС, Треугольники и его элементыACD — внутренний угол треугольника ACD.

Периметром треугольника называется сумма длин всех его сторон. Периметр треугольника ABC обозначается PABC.

Конструкции, имеющие треугольную форму, применяются при строительстве архитектурных сооружений, мостов и жилых зданий. Например, при постройке крыш некоторых домов используются стропила, имеющие форму треугольников (рис. 60, а).

Для треугольников, как и любых геометрических фигур, определяется понятие их равенства.

Два треугольника называются равными, если их можно совместить наложением, т. е. можно совместить их вершины, стороны и углы.

Рассмотрим пример. Если лист бумаги, имеющий форму прямоугольника, разрезать на две части, как показано на рисунке 60, б, то мы получим модели равных треугольников. Непосредственно можно убедиться, что полученные части можно наложить одна на другую так, что они совместятся.

Треугольники и его элементы

Два равных треугольника ABC и A1B1C1 (рис. 60, в) можно совместить так, что попарно совместятся их вершины, стороны и углы. Другими словами, если два треугольника равны, то стороны и углы одного треугольника соответственно равны сторонам и углам другого треугольника. Подчеркнем, что:

  • в равных треугольниках против соответственно равных сторон лежат равные углы;
  • в равных треугольниках против соответственно равных углов лежат равные стороны.

Например, в равных треугольниках ABC и A1B1C1 , изображенных на рисунке 60, в, против равных сторон ВС и В1С1 лежат равные углы А и А1. Против равных углов С и С1 лежат равные стороны AB и A1B1.

Если треугольники ABC и A1B1C1 равны, то это обозначается следующим образом: Треугольники и его элементыABC = Треугольники и его элементыA1B1C1

Заметим, что для установления равенства треугольников необязательно их совмещать один с другим, а достаточно сравнить некоторые их элементы (стороны и углы).

Для доказательства равенства треугольников пользуются соответствующими теоремами (признаками), которые позволяют на основании равенства некоторых элементов треугольников делать вывод о равенстве самих треугольников.

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Определение треугольника

Треугольник — замкнутая ломаная, состоящая из трех звеньев. Или часть плоскости, ограниченная этой ломаной. У каждого треугольника три стороны, три вершины и три угла. Сумма длин сторон треугольника — его периметр.

Сумма углов треугольника равна 180°.

Важную роль в геометрии играют признаки равенства треугольников. Две фигуры называются равными, если их можно совместить. ЕслиТреугольники и его элементы, тоТреугольники и его элементыТреугольники и его элементы

Три признака равенства треугольников:

Два треугольника равны, если: две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника (I); или если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника (II); или если три стороны одного треугольника равны трем сторонам другого треугольника (III).

Треугольник, у которого две стороны равны, называется равнобедренным. Равные стороны равнобедренного треугольники называются боковыми сторонами, а третья — его основанием.

В равнобедренном треугольнике углы при основании равны.

Если два угла треугольника равны, то он равнобедренный.

Если у треугольника все стороны равны, его называют равно сторонним треугольником. Каждый угол равностороннего треугольника равен 60°.

В зависимости от углов треугольники делят на остроуголь ные, прямоугольные, и тупоугольные. Сторону прямоугольного треугольника, лежащую против прямого угла, называют гипотенузой, а две другие — катетами.

Каждая сторона треугольника меньше суммы двух другим его сторон и больше их разности. Какие бы ни были три точки плоскости А, В и С, всегда АВ + ВС > АС.

В каждом треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.

Если три точки, не лежащие на одной прямой, соединить отрезками, получится треугольник. Другими словами: треугольник — это замкнутая ломаная из трех звеньев. На рисунке 119 изображён треугольник ABC (пишут: Треугольники и его элементы). Точки А, В, С — вершины, отрезки АВ, ВС и СА — стороны этого треугольника. Каждый треугольник имеет три вершины и три стороны.

Треугольники и его элементы

Много разных моделей треугольников можно увидеть в подъемных кранах, заводских конструкциях, различных архитектурных строениях (рис. 120).

Треугольники и его элементы

Сумму длин всех сторон треугольника называют его периметром.

Каждая сторона треугольника меньше суммы двух других его сторон. Почему?Отрезок, соединяющий вершину треугольника с серединой его противолежащей стороны, — медиана треугольника. Отрезок биссектрисы угла треугольника от его вершины до противолежащей стороны — биссектриса треугольника. Перпендикуляр, опущенный из вершины треугольника на прямую, которой принадлежит его противолежащая сторона, — высота треугольника. На рисунке 121 изображен Треугольники и его элементы, в котором из вершины С проведены: медиана СМ, биссектриса CL и высота СН.

Треугольники и его элементы

Каждый треугольник имеет три медианы, три биссектрисы и три высоты.

Треугольник разделяет плоскость на две области: внутреннюю и внешнюю. Фигура, состоящая из треугольника и его внутренней области, также называется треугольником.

Углами треугольника ABC называют углы ВАС, ABC и АСИ. Их обозначают еще так: Треугольники и его элементы. Каждый треугольник имеет три угла.

Если треугольник имеет прямой или тупой угол, его называют соответственно прямоугольным или тупоугольным треугольником. Треугольник, все углы которого острые, называется остроугольным. На рисунке 122 изображены остроугольный, прямоугольный и тупоугольный треугольники. Их внутренние области закрашены.

Треугольники и его элементы

Словом треугольник геометры называют два разных понятия: и замкнутую ломаную из трех звеньев, и такую ломаную вместе с ограниченной ею внутренней частью плоскости. Подобно тому, как стороной треугольника иногда называют отрезок, иногда — длину этого отрезка, высотой треугольника называют и определенный отрезок, и его длину.

Так делают для удобства: чтобы каждый раз не говорить, например, «длина высоты треугольника равна 5 см», договорились говорить проще: «высота треугольника равна 5 см».

Каждый многоугольник можно разрезать на несколько треугольников. Поэтому треугольники в геометрии играют такую важную роль, как атомы в физике, как кирпичи в доме. Существует даже отдельная часть геометрии, интересная и содержательная: геометрия треугольника.

Пример:

На сколько частей могут разбивать плоскость два ее треугольника?

Решение:

Если два треугольника расположены в одной плоскости, то они могут разбить ее максимум на 8 частей (рис. 123). Мысленно передвигая один из двух данных треугольников так, чтобы сначала один из образованных их пересечением треугольник превратился в точку, потом-второй и т. д., убеждаемся, что два треугольника могут разбивать плоскость на 3, 4, 5, 6, 7, 8 частей (рис. 124). Лишь когда два треугольника равны и совмещены друг с другом, они разбивают плоскость на 2 части.

Треугольники и его элементы

Пример:

Среднее арифметическое всех сторон треугольника равно т. Найдите периметр треугольника.

Решение:

Если a, b, c — стороны треугольника, а Р — его периметр , то
Треугольники и его элементы

Сумма углов треугольника

Теорема: Сумма углов треугольника равна 180°

Доказательство:

Пусть ABC — произвольный треугольник (рис. 127). Через его вершину С проведем прямую КР, параллельную АВ.

Треугольники и его элементы

11олученные углы АСК и ВСР обозначим цифрами 1 и 2. ТогдаТреугольники и его элементыкак внутренние накрест лежащие углы при параллельных прямых АВ и КР и секущих АС и ВС. Углы 1, 2 и С в сумме равны развернутому углу, то есть 180°. Поэтому

Треугольники и его элементы

В доказанной теореме 8 речь идет о сумме мер углов треугольника. Но для упрощения формулировок вместо «мера угла» часто употребляют слово «угол».

Треугольник не может иметь два прямых или два тупых угла, В каждом треугольнике по крайней мере два угла — острые.

Иногда кроме углов треугольника (внутренних) рассматривают также его внешние углы. Внешним углом треугольника называют угол, образованный стороной треугольника и продолжением его другой стороны. Например, внешним углом треугольника ABC при вершине А является угол КАС (рис. 128).

Треугольники и его элементы

Теорема: Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Треугольники и его элементы

Треугольники и его элементыТреугольники и его элементы

Треугольники и его элементыВНИМАНИЕ! При каждой вершине треугольника можно построить два внешних угла, продлив ту или иную его сторону. Например, каждый из углов КАС и РАВ — внешний угол треугольника ABC при вершине А (рис. 129). Такие два внешних угла — вертикальные, поэтому равны друг другу.

Теорему о сумме углов треугольника можно обобщить и распространить на произвольные многоугольники.

Каждый четырехугольник можно разрезать на два треугольника, соединив его противолежащие вершины отрезком. (Если один из углов четырехугольника больше развернутого, то именно его вершину следует соединить с противолежащей, как на рисунке 130.) Сумма всех углов четырех- ‘ угольника равна сумме всех углов двух образованных треугольников, то есть 180° • 2. Таким образом, сумма углов любого четырехугольника равна 360°.

Треугольники и его элементы

Произвольный пятиугольник можно разрезать на четырехугольник и треугольник или на 3 треугольника (рис. 131). Таким образом, сумма углов пятиугольника равна 180° • 3, то есть 540°.

Треугольники и его элементы

Попробуйте написать формулу, по которой можно вычислить сумму углов произвольного n-угольника.

Пример №1

Чему равна сумма внешних углов треугольника, взятых при каждой вершине по одному?

Решение:

Пусть ABC — произвольный треугольник. Обозначим его внешние углы 1, 2 и 3 (рис. 132). Согласно теореме о внешнем угле треугольника

Треугольники и его элементы

Сложив отдельно левые и правые части этих равенств, получим:

Треугольники и его элементы

Треугольники и его элементы

Треугольники и его элементы

Пример №2

Докажите, что в каждом треугольнике есть угол не больше 60° и угол не меньше 60°.

Решение:

Если бы каждый угол треугольника был меньше 60°, то сумма всех его углов составляла бы меньше 180°, а это невозможно. Если бы каждый угол треугольника был больше 60°, то сумма всех его углов была бы больше 180°, что также невозможно.

Следовательно, в каждом треугольнике есть угол не ‘ больше 60° и угол не меньше 60°.

О равенстве геометрических фигур

На рисунке 136 изображены два треугольника. Представьте, что один из них начерчен на бумаге, и второй — на прозрачной пленке. Передвигая пленку, второй треугольник можно совместить с первым. Говорят: если данные треугольники можно совместить движением, то они равны. Равными друг другу бывают не только треугольники, но и отрезки, углы, окружности и другие фигуры.

Изображенные на рисунке 137 фигуры тоже равны, потому что их можно совместить, согнув лист бумаги по прямой I. Л фигуры, изображенные на рисунке 138, не равны, их нельзя Совместить.
Для обозначения равных фигур используют знак равенства Треугольники и его элементы. Например, Треугольники и его элементы

Треугольники и его элементы

Если каждая из двух фигур равна третьей, то первая и вторая фигуры также равны.

С равными фигурами часто приходится иметь дело многим специалистам. В форме равных прямоугольников изготовляют листы жести, фанеры, стекла, облицовочную плитку, паркетины и т. д. Равны все листы бумаги из одной пачки, соответствующие детали двух машин одной марки.Чтобы выяснить, равны ли две фигуры, можно попробовать их совместить. Но на практике это не всегда удается осуществить. Например, таким способом нельзя определить, равны ли два земельных участка. Поэтому приходится искать другие способы, выявлять признаки равенства тех или иных фигур. Например, если радиусы двух окружностей равны, то равны и сами окружности. Это — признак равенства окружностей. В следующем параграфе мы рассмотрим признаки равенства треугольников.

Треугольник с вершинами А, В и С можно обозначать по-разному: Треугольники и его элементыи т. д. Однако для удобства договоримся, что когда пишут Треугольники и его элементы, то подразумевают, что Треугольники и его элементыАВ = КР, АС = КТ, ВС = РТ.

Слово равенство в математике и других науках употребляется достаточно часто. Говорят, в частности, о равенстве чисел, равенстве выражений, равенстве значений величин. Равенство геометрических фигур — это отношение. Оно имеет следующие свойства:

  1. каждая фигура равна самой себе;
  2. если фигура А равна фигуре В, то и фигура В равна А;
  3. если фигура А равна В, а фигура В равна С, то фигуры А и С также равны.

Нередко из равенства одних фигур либо величин следует и равенство других фигур либо величин, но — не всегда. Например, если треугольники равны, то и их периметры равны. Однако если периметры двух треугольников равны, то это еще не значит, что равны и сами треугольники. То же самое: если треугольники равны, то и их площади равны. Но если площади двух треугольников равны, это еще не означает, что и треугольники равны.

Очень часто для обоснования равенства тех или иных фигур необходимо обосновать равенство некоторых треугольников. Вот почему вопросу о равенстве треугольников в геометрии придают такое важное значение: большинство теорем школьной геометрии доказывают, используя признаки равенства треугольников.

Пример №3

Равны ли углы, изображенные на рисунке 139?

Решение:

Стороны угла — лучи. Хотя на рисунке они изображены неравными отрезками, но следует представить их в виде бесконечных лучей. Поскольку каждый из этих углов имеет 35° (проверьте), то они равны.

Пример №4

Докажите, что треугольники не могут быть равными, если не равны их наибольшие углы.

Решение:

Пусть у треугольников ABC и КРТ

Треугольники и его элементы. Если бы данные треугольники были равны, их можно было бы совместить. Тогда наибольший угол А треугольника ABC совместился бы с наибольшим углом К треугольника КРТ. Это невозможно, поскольку Треугольники и его элементы. Значит, данные треугольники не могут быть равными.

Треугольники и его элементы

Признаки равенства треугольников

Если треугольники ABC и Треугольники и его элементывины друг другу, то их можно совместить. При этом если совместятся вершины Треугольники и его элементыи то совместятся и стороны:Треугольники и его элементы Треугольники и его элементыЗначит, если Треугольники и его элементыто Треугольники и его элементы,Треугольники и его элементыЧтобы доказать, что данные треугольники равны, не обязательно убеждаться в истинности всех шести равенств.

Теорема: (первый признак равенства треугольников). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство:

Пусть Треугольники и его элементы— два треугольника, у которыхТреугольники и его элементы, Треугольники и его элементыТреугольники и его элементы(рис. 1;46). Докажем, что Треугольники и его элементыТреугольники и его элементы

Наложим Треугольники и его элементытаким образом, чтобы вершина Треугольники и его элементысовместилась А, вершина Треугольники и его элементы— с В, а сторона Треугольники и его элементыналожилась на луч АС. Это можно сделать, потому что по условиюТреугольники и его элементыТреугольники и его элементы. Поскольку Треугольники и его элементы, то при таком положении точка Треугольники и его элементысовместится с С. В результате все вершины Треугольники и его элементысовместятся с соответствующими вершинами

Треугольники и его элементы

Треугольники и его элементы

Теорема: (второй признак равенства треугольников). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Доказательство:

Треугольники и его элементы

Треугольники и его элементыТреугольники и его элементы

*Существуют также и другие признаки равенства треугольников (см. теорему 14).
На признаки равенства треугольников нам придется ссылаться часто. Чтобы не путать, какой из них назвали первым, какой — вторым и т. д., их лучше всего различать по смыслу, говорить о признаке равенства треугольников:

  1. по двум сторонам и углу между ними;
  2. по стороне и двум прилежащим углам,
  3. по трем сторонам (его докажем позже).

Эти признаки равенства треугольников называют общими признаками, поскольку они верны для любых треугольников. Кроме них, есть еще признаки равенства прямоугольных треугольников, равнобедренных треугольников и др.

Два равносторонних треугольника равны, если сторона одного из них равна стороне другого.

Попробуйте доказать этот признак, воспользовавшись общими признаками.

Пример №5

Отрезки АВ и CD пересекаются в точке О так, что АО = OD и СО = ОВ. Докажите, что АС = BD.

Решение:

Рассмотрим треугольники АСО и DBO (рис. 148). Их углы при вершине О вертикальные, значит, равны. Соответственные стороны тоже равны:

АО = OD, СО = ОВ. По первому признаку равенства треугольников Треугольники и его элементы

Треугольники и его элементыСтороны АС и BD этих треугольников соответственные, поскольку лежат против равных углов при вершине О. Следовательно, АС = BD.

Треугольники и его элементы

Пример №6

Две стороны треугольника равны. Докажите, что и медианы, проведенные к этим сторонам, также равны.

Треугольники и его элементы

Решение:

Пусть у Треугольники и его элементысторона АВ = АС, а ВК и СР — медианы (рис. 149). АР = = АК, как половины равных сторон. Треугольники и его элементы, поскольку АВ = = АС, АК = АР и угол А общий. Следовательно, ВК = СР.

Равнобедренный треугольник

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны равнобедренного треугольника называют боковыми сторонами, а третью его сторону — основанием.

Треугольник, не являющийся равнобедренным, называют разносторонним. Треугольник, у которого все стороны равны, называют равносторонним. Это отдельный вид равнобедренного треугольника (рис. 161).

Треугольники и его элементы

Теорема: В равнобедренном треугольнике углы при основании равны, а биссектриса, проведенная к основанию, является и медианой, и высотой.

Доказательство:

Пусть ABC — равнобедренный треугольник с основанием ВС (рис. 162). Биссектриса AL разбивает его на треугольники ABL и ACL. Поскольку АВ = AC, AL — общая сторона, Треугольники и его элементыТреугольники и его элементы, то по двум сторонам и углу между ними Треугольники и его элементы. Из равенства этих треугольников следует:

а) Треугольники и его элементы, то есть углы при основании Треугольники и его элементыравны;

б) BL = CL, то есть AL — медиана Треугольники и его элементы

в) Треугольники и его элементы, Треугольники и его элементы

Треугольники и его элементы

Теорема: Если в треугольнике два угла равны, то он равнобедренный.

Доказательство:

Пусть в Треугольники и его элементы(рис. 162). Докажем, что АВ =АС. Проведем биссектрису AL. Она делит данный треугольник И я два: Треугольники и его элементыУ нихТреугольники и его элементы, Поэтому Треугольники и его элементы. По стороне AL и прилежащим к ней углам Треугольники и его элементы. Следовательно, Треугольники и его элементы

Из теорем 9 и 10 вытекает такое следствие.

В треугольнике против равных сторон лежат равные углы, а против равных углов — равные стороны.

Равнобедренный — это имеющий равные бедра. Равные стороны — словно ноги.

Как соотносятся между собой треугольники и равнобедренные треугольники? Равнобедренные треугольники составляют только часть всех треугольников. Говорят, что объем понятия «треугольники» больше объема понятия «равнобедренные треугольники». Такие соотношения принято наглядно изображать диаграммами Эйлера (рис. 163). Те треугольники, которые не являются равнобедренными, называют разносторонними треугольниками. Следовательно, общее понятие «треугольники»можно разделить на два класса: треугольники равнобедренные и треугольники разносторонние (рис. 164):
Треугольники и его элементы

Пример №7

Две стороны равнобедренного треугольника равны соответственно 2 см и б см. Найдите длину третьей его стороны.

Решение:

Основание данного треугольника не может быть равно б см, поскольку 2 см + 2 см против равных сторон лежат равны’ углы. Поэтому Треугольники и его элементы

Треугольники и его элементы

Равенство углов BAD и BCD можно доказать двумя способами: либо показать, что каждый из них состоит из двух равных углов Треугольники и его элементы Треугольники и его элементы(рис. 175), либо проведя отрезок BD.

Треугольники и его элементы

Пример №10

На окружности с центром О обозначены точки А, В, К и Р такие, что АВ = КР (рис. 176). Докажите, что Треугольники и его элементы

Решение:

Проведя в данные точки радиусы, получим треугольники АОВ и КОР. Они равны по трем сторонам, поскольку АВ = КР по условию и ОА = OB = OK = ОР — как радиусы. Поэтому Треугольники и его элементы

Треугольники и его элементы

Прямоугольный треугольник

Треугольник называется прямоугольным, если один из его углов прямой Сумма двух других его углов равна 90° поскольку 180° — 90° = 90°.

Сторона прямоугольного треугольника, противолежащая прямому углу, — эп гипотенуза, две другие его стороны катеты (рис. 182). На рисунке прямо! угол иногда обозначают квадратиком. В каждом прямоугольном треугольнике гипотенуза больше каждого из катетов.

Треугольники и его элементы

Позже нам будут необходимы признаки равенства прямо угольных треугольников. Из первого и второго признаков равенства треугольников (§ 12) непосредственно следуют таки АС.

Стороны АВ и АС не могут быть равными, потому что тогда данный треугольник был бы равнобедренным и один из его углов при основании не мог бы быть больше другого.

Не может сторона АВ быть и меньше АС, поскольку тогда угол С был бы меньше угла В. А поскольку сторона АВ не равна АС и не меньше АС, то она больше АС.Треугольники и его элементы

  1. В каждом прямоугольном треугольнике гипотенуза длиннее каждого катета.
  2. Перпендикуляр, проведенный из какой-либо точки к прямой, короче любой наклонной, проведенной и: Треугольники и его элементы. Если представить, что фигура Треугольники и его элементыизображена на прозрачной пленке, то с помощью наложения этой пленки на фигуру Треугольники и его элементы(той или другой стороной (рис. 55, а, б) можно совместить фигуры Треугольники и его элементыи Треугольники и его элементы. В таком случае фигуры Треугольники и его элементыи Треугольники и его элементыпо определению равны.

Треугольники и его элементы

Для обозначения равенства фигур используют знак математического равенства Треугольники и его элементыЗапись Треугольники и его элементыозначает «фигура Треугольники и его элементыравна фигуре Треугольники и его элементы »

Рассмотрим равные треугольники Треугольники и его элементыи Треугольники и его элементы(рис. 56).

По определению, такие треугольники можно совместить наложением. Очевидно, что при наложении соответственно совместятся стороны и углы этих треугольников, то есть каждому эле менту треугольника Треугольники и его элементыбудет соответствовать равный элемент треугольника Треугольники и его элементы. Условимся, что в записи Треугольники и его элементымы будем упорядочивать названия треугольников так, чтобы вершины равных углов указывались в порядке соответствия. Это означает: если Треугольники и его элементы, то Треугольники и его элементыТреугольники и его элементы

Таким образом, из равенства двух треугольников вытекают шесть равенств соответствующих элементов: три — для углов и три — для сторон. На рисунках соответственно равные стороны обычно обозначают одинаковым количеством черточек, Рис. 56. Треугольники а соответственно равные углы — одинаковым ко личеством дужек (рис. 56).

Треугольники и его элементы

А верно ли, что треугольники, имеющие соответственно равные стороны и углы, совмещаются наложением? Можно ли по равенству некоторых соответствующих элементов доказать равенство самих треугольников? Ответить на эти вопросы мы попытаемся в дальнейшем.

[1] Существование треугольника, равного данному, является одной из аксиом планиметрии. Эта аксиома приведена в Приложении 1.

Первый признак равенства треугольников и его применение

Первый признак равенства треугольников

В соответствии с определением равных фигур, два треугольника равны, если они совмещаются наложением. Но на практике наложить один треугольник на другой не всегда возможно. Например, таким образом невозможно сравнить два земельных участка. Значит, возникает необходимость свести вопрос о равенстве треугольников к сравнению их сторон и углов. Но нужно ли для установления равенства сравнивать все шесть элементов данных треугольников? Бели нет, то какие именно элементы двух треугольников должны быть соответственно равными, чтобы данные треугольники были равны? Ответ на этот вопрос дают признаки равенства треугольников.

Докажем первый из этих признаков.

Теорема: (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство:

Пусть даны треугольники Треугольники и его элементыи Треугольники и его элементы, у которых Треугольники и его элементыТреугольники и его элементы(рис. 58). Докажем, что Треугольники и его элементы

Треугольники и его элементы

Поскольку Треугольники и его элементыто треугольник Треугольники и его элементыможно наложить на треугольник Треугольники и его элементытак, чтобы точки Треугольники и его элементыи Треугольники и его элементысовместились, а стороны Треугольники и его элементыи Треугольники и его элементыналожились на лучи Треугольники и его элементыи Треугольники и его элементысоответственно. По условию Треугольники и его элементыи Треугольники и его элементы, следовательно, сторона Треугольники и его элементысовместится со стороной Треугольники и его элементы, а сторона Треугольники и его элементы— со стороной Треугольники и его элементы. Таким образом, точка Треугольники и его элементысовместится с точкой Треугольники и его элементы, а точка Треугольники и его элементы— с точкой Треугольники и его элементы, то есть стороны Треугольники и его элементыи Треугольники и его элементытакже совместятся. Значит, при наложении треугольники Треугольники и его элементы, совместятся полностью. Итак, Треугольники и его элементыпо определению. Теорема доказана.

Пример №14

Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них. Докажите равенство треугольников АОС и BOD (рис. 59).

Треугольники и его элементы

Решение:

В треугольниках АОС и BOD АО = ВО и СО = DO по условию, Треугольники и его элементыпо теореме о вертикальных углах. Таким образом, Треугольники и его элементыпо первому признаку равенства треугольников.

Практическое значение доказанной теоремы очевидно из такого примера.

Пусть на местности необходимо определить расстояние между точками А и С, прямой проход между которыми невозможен (рис. 60). Один из способов измерения следующий: на местности выбирают некоторую точку О, к которой можно пройти из точек А , С, В, D, и на лучах АО и СО откладывают отрезки ВО=АО и DO = СО.

Треугольники и его элементы

Тогда, согласно предыдущей задаче, Треугольники и его элементыпо первому признаку равенства треугольников. Отсюда следует, что искомое расстояние АС равно расстоянию BD, которое можно измерить.

Опровержение утверждений. Контрпример

Проанализируем первый признак равенства треугольников. Согласно ему для доказательства равенства двух треугольников достаточно доказать равенство трех пар соответствующих элементов — двух сторон и угла между ними. Требование того, чтобы равные углы обязательно лежали между равными сторонами, является очень важным.

Действительно, рассмотрим треугольники ABC и А1В1С1 (рис. 61). Они имеют две пары соответственно равных сторон (АВ = А1В1, ВС = В1С1), но равные углы Треугольники и его элементыи Треугольники и его элементылежат не между равными сторонами, поэтому данные треугольники не равны.

Треугольники и его элементы

С помощью приведенного примера мы показали, что утверждение «Если две стороны и некоторый угол одного треугольника соответственно равны двум сторонам и некоторому углу другого треугольника, то такие треугольники равны» является ошибочным. Иначе говоря, мы опровергли это утверждение конкретным примером. Такой пример, с помощью которого можно показать, что некоторое общее утверждение является неправильным, называется контрпримером. Принцип построения контрпримера для опровержения неправильного утверждения довольно прост: нужно смоделировать ситуацию, когда условие утверждения выполняется, а заключение — нет.

Контрпример — от латинского «контра» — против

Изобразим схематически опровержение утверждения с помощью контрпримера.

УТВЕРЖДЕНИЕ Если А, то В

КОНТРПРИМЕР А, но не В

Контрпримеры используются только для опровержения неправильных утверждений, но не для доказательства правильных. Заметим также, что не всякое ошибочное утверждение можно опровергнуть контрпримером. Если для опровержения некоторого утверждения не удалось подобрать контрпример, это не означает, что данное утверждение верно.

Опровержение утверждений с помощью контрпримеров применяется не только в математике. Пусть, например, некто утверждает, что все птицы, которые водятся в Украине, осенью улетают на юг. Это утверждение можно опровергнуть, приведя в качестве контрпримера воробьев. А опровергнуть утверждение «В русском языке нет существительного, в котором содержались бы пять согласных подряд» можно с помощью самого слова «контрпример » .

Перпендикуляр к прямой

9.1. Существование и единственность прямой, проходящей через данную точку перпендикулярно данной прямой

Признаки равенства треугольников применяются не только для решения задач, но и для доказательства новых геометрических утверждений, в частности и тех, в формулировках которых не упоминается треугольник. Докажем с помощью первого признака равенства треугольников теорему о прямой, проходящей через данную точку плоскости перпендикулярно данной прямой.

Теорема (о существовании и единственности перпендикулярной прямой) Через любую точку плоскости можно провести прямую, перпендикулярную данной, и только одну.

Перед началом доказательства теоремы проанализируем ее формулировку. Теорема содержит два утверждения:

  1. существует прямая, проходящая через данную точку плоскости и перпендикулярная данной прямой;
  2. такая прямая единственна.

Первое утверждение теоремы говорит о существовании прямой с описанными свойствами, второе — о ее единственности. Каждое из этих утверждений необходимо доказать отдельно.

Рассмотрим сначала случай, когда данная точка не лежит на данной прямой.

1) Существование. Пусть даны прямая Треугольники и его элементыи точка А , не лежащая на данной прямой. Выберем на прямой Треугольники и его элементыточки В и М так, чтобы угол АВМ был острым (рис. 67).

Треугольники и его элементы

С помощью транспортира отложим от луча ВМ угол СВМ, равный углу АВМ так, чтобы точки А и С лежали по разные стороны от прямой Треугольники и его элементы. На луче ВС отложим отрезок ВА1 , равный отрезку ВА , и соединим точки А и D. Пусть D — точка пересечения отрезка Треугольники и его элементы, с прямой Треугольники и его элементы.

Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы. Они имеют общую сторону BD, a Треугольники и его элементы Треугольники и его элементыи Треугольники и его элементыпо построению. Таким образом, Треугольники и его элементыпо первому признаку равенства треугольников. Отсюда следует, что Треугольники и его элементыНо эти углы смежные, поэтому по теореме о смежных углах Треугольники и его элементыТреугольники и его элементы. Итак, прямая Треугольники и его элементыперпендикулярна прямой Треугольники и его элементы.

2) Единственность. Применим метод доказательства от противного.

Пусть через точку А проходят две прямые Треугольники и его элементыи Треугольники и его элементыперпендикулярные прямой Треугольники и его элементы(рис. 68). Тогда по теореме о двух прямых, перпендикулярных третьей, Треугольники и его элементы. Но это невозможно, поскольку прямые Треугольники и его элементыи Треугольники и его элементыимеют общую точку А. Итак, наше предположение неверно, то есть прямая, проходящая через точку А перпендикулярно прямой Треугольники и его элементы, единственна.

Треугольники и его элементыТреугольники и его элементы

Теперь рассмотрим случай, когда точка А лежит на прямой Треугольники и его элементы. От любой полупрямой прямой Треугольники и его элементыс начальной точкой А можно отложить прямой угол (рис. 69). Отсюда вытекает существование перпендикулярной прямой, содержащей сторону этого угла.

Доказательство единственности такой прямой повторяет доказательство, представленное выше. Теорема доказана.

Утверждения о существовании и единственности уже встречались нам в аксиомах, но необходимость доказывать их возникла впервые. В математике существует целый ряд теорем, аналогичных доказанной (их называют теоремами существования и единственности). Общий подход к таким теоремам состоит в отдельном доказательстве каждого из двух утверждений.

Необходимость двух отдельных этапов доказательства в шутку можно пояснить так: утверждение «У дракона есть голова» не означает, что эта голова единственная. Доказательство существования определенного объекта чаще всего сводится к описанию способа его получения. Единственность обычно доказывают методом от противного.

Перпендикуляр. Расстояние от точки до прямой

Определение:

Перпендикуляром к данной прямой, проведенным из точки А, называется отрезок прямой, перпендикулярной данной, одним из концов которого является точка А а вторым (основанием перпендикуляра) — точка пересечения этих прямых.

На рисунке 70 отрезок АВ является перпендикуляром к прямой а, проведенным из точки А . Точка В — основание этого перпендикуляра. Поскольку по предыдущей теореме через точку А можно провести единственную прямую, перпендикулярную прямой а, то отрезок АВ — единственный перпендикуляр к прямой а, проведенный из точки А.

Треугольники и его элементы

Из доказанной теоремы следует, что из точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и только один.

Это утверждение называют теоремой о существовании и единственности перпендикуляра к прямой.

Определение:

Расстоянием от точки до прямой, не проходящей через эту точку, называется длина перпендикуляра, опущенного из данной точки на данную прямую.

Иногда расстоянием от точки до прямой называют сам этот перпендикуляр. Таким образом, отрезок АВ (см. рис. 70) является расстоянием от точки А до прямой а.

Пример №15

Точки А и С лежат по одну сторону от прямой а, АВ и CD — расстояние от данных точек до прямой а, причем АВ = CD (рис. 71). Докажите, что AD = СВ.

Треугольники и его элементы

Решение:

Рассмотрим треугольники ABD и CDB. У них сторона ВD общая, АВ = CD по условию. По определению расстояния от точки до прямой АВ и CD — перпендикуляры к прямой а, то есть Треугольники и его элементыТогда Треугольники и его элементыпо первому признаку равенства треугольников. Из этого следует, что AD = СВ, что и требовалось доказать.

Второй признак равенства треугольников и его применение

Второй признак равенства треугольников

В первом признаке равенства треугольников равенство двух треугольников было доказано по трем элементам: двум сторонам и углу между ними. Однако это не единственный возможный набор элементов, равенство которых гарантирует равенство треугольников. Еще один такой набор — это сторона и прилежащие к ней углы.

Теорема: (второй признак равенства треугольников — по стороне и прилежащим к ней углам)

Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Доказательство:

Пусть даны треугольники Треугольники и его элементыи Треугольники и его элементы, у которых Треугольники и его элементы, Треугольники и его элементыТреугольники и его элементы(рис. 72). Докажем, что Треугольники и его элементы

Треугольники и его элементы

Поскольку Треугольники и его элементы, то треугольник Треугольники и его элементыможно наложить на треугольник Треугольники и его элементытак, чтобы сторона АС совместилась со стороной Треугольники и его элементы, а точки Треугольники и его элементыи Треугольники и его элементылежали по одну сторону от прямой Треугольники и его элементы. По условию Треугольники и его элементыи Треугольники и его элементы, поэтому сторона Треугольники и его элементыналожится на луч Треугольники и его элементы, а сторона Треугольники и его элементы— на луч Треугольники и его элементы. Тогда точка Треугольники и его элементы— общая точка сторон Треугольники и его элементыи Треугольники и его элементы— будет лежать как на луче Треугольники и его элементы, так и на луче Треугольники и его элементы, то есть совместится с общей точкой этих лучей — точкой В. Таким образом, совместятся стороны Треугольники и его элементыи Треугольники и его элементы, а также Треугольники и его элементыи Треугольники и его элементы. Значит, при наложении треугольники Треугольники и его элементыи Треугольники и его элементы, совместятся полностью, то есть по определению Треугольники и его элементы. Теорема доказана.

Решение геометрических задач «от конца к началу»

Рассмотрим пример применения второго признака равенства треугольников для решения задачи.

Пример №16

На рисунке 73 Треугольники и его элементыНайдите угол D если Треугольники и его элементы

Треугольники и его элементы

Прежде чем привести решение этой задачи, попытаемся ответить на вопрос: как именно надо рассуждать, чтобы найти путь к нему?

  1. Сначала проанализируем вопрос задачи. Нам необходимо найти градусную меру угла D. Очевидно, что для этого должны быть использованы числовые данные. Мы имеем лишь одно такое условие: Треугольники и его элементы. Таким образом, можно предположить, что углы B и D должны быть как-то связаны. Как именно?
  2. Заметим, что углы В и D являются углами треугольников ABC и ADC соответственно, причем оба эти угла противолежат стороне АС . Отсюда возникает идея о том, что углы B и D могут быть равными, и их равенство может следовать из равенства треугольников ABC и ADC .
  3. Следующий шаг рассуждений: действительно ли треугольники ABC и ADC равны? Если да, то на основании какого признака можно доказать их равенство? Здесь на помощь приходят другие данные задачи — равенства углов: Треугольники и его элементы. Как вы уже знаете, две пары соответственно равных углов рассматриваются в формулировке второго признака равенства треугольников, то есть следует попробовать применить именно его.
  4. Для окончательного определения хода решения задачи осталось ответить на вопрос: каких еще данных нам не достает для применения второго признака равенства треугольников? Откуда их можно получить? Отметим, что углы 1 и 3 треугольника ABC, а также углы 2 и 4 треугольника ADC являются прилежащими к сторонеАС, которая, кроме того, является общей стороной данных треугольников.

Итак, путь определен, и остается лишь записать решение, повторяя рассуждения в обратном порядке — от 4-го к 1-му пункту.

Решение:

Рассмотрим треугольники ABC и АDС . В них сторона АС общая, Треугольники и его элементыпо условию, и эти углы прилежат к стороне АС. Таким образом, Треугольники и его элементыпо второму признаку равенства треугольников.

Углы В и D — соответственно равные углы равных треугольников.

Значит, Треугольники и его элементы

Ответ: 110°.

Отметим, что в рассуждениях 1) — 4) мы начинали с вопроса задачи, а затем использовали ее условия, то есть шли «от конца к началу». Во многих геометрических задачах именно такой способ рассуждений позволяет найти правильный путь к решению.

Пример №17

Докажите, что середины сторон равнобедренного треугольника являются вершинами другого равнобедренного треугольника.

Решение:

Пусть ABC — равнобедренный треугольник с основанием АС, точки D , Е, F — середины сторон АВ, ВС и АС соответственно (рис. 84). Докажем, что треугольник D EF равнобедренный. Рассмотрим треугольники DAF и ECF. У них AD = СЕ как половины равных сторон АВ и СВ, AF = CF (поскольку по условию точка F — середина AC), Треугольники и его элементыкак углы при основании равнобедренного треугольника ABC. Следовательно, Треугольники и его элементыпо первому признаку равенства треугольников. Тогда отрезки D F = EF как соответствующие стороны равных треугольников, то есть треугольник D EF равнобедренный.

Треугольники и его элементы

Признак равнобедренного треугольника

Из предыдущей теоремы следует, что в треугольнике против равных сторон лежат равные углы. Но всегда ли стороны, противолежащие равным углам, должны быть равными? Ответим на этот вопрос следующей теоремой.

Теорема: (признак равнобедренного треугольника) Если в треугольнике два угла равны, те он равнобедренный:

Доказательство:

Пусть в треугольнике ABC Треугольники и его элементы. Докажем, что этот треугольник равнобедренный.

Через точку D — середину стороны АС — проведем прямую d , перпендикулярную АС. Пусть эта прямая пересекает луч АВ в точке Треугольники и его элементы(рис. 85). Соединим точки Треугольники и его элементыи Треугольники и его элементыи рассмотрим треугольники Треугольники и его элементы. У них сторона Треугольники и его элементыобщая, Треугольники и его элементыи AD = CD по построению. Таким образом, Треугольники и его элементыпо первому признаку. Отсюда Треугольники и его элементы, Треугольники и его элементы. Поскольку по построению точка Треугольники и его элементылежит на луче АВ, угол Треугольники и его элементысовпадает с углом А треугольника ABC. Тогда по условию теоремы и по доказанному имеем: Треугольники и его элементы. Таким образом, по аксиоме откладывания углов углы Треугольники и его элементыи Треугольники и его элементысовпадают, то есть точка Треугольники и его элементылежит и на луче СВ. Поскольку лучи АВ и СВ имеют единственную точку пересечения, точки Треугольники и его элементыи Треугольники и его элементысовпадают, то есть АВ = СВ. Теорема доказана.

Треугольники и его элементы

Если в треуольнике все углы равны, то он равносторонний.

Треугольники и его элементы

Отметим, что теперь мы имеем два пути доказательства того, что треугольник равнобедренный:

  1. по определению равнобедренного треугольника (то есть путем доказательства равенства двух сторон);
  2. по признаку равнобедренного треугольника (то есть путем доказательства равенства двух углов).

Пример №18

На продолжении основания АС равнобедренного треугольника ABC отмечены точки D и E, причем AD=CE (рис. 87). Докажите, что треугольник DBE равнобедренный:

Треугольники и его элементы

Решение:

Рассмотрим треугольники DAB и ЕСВ. У них AD = СЕ по условию, АВ = СВ как боковые стороны равнобедренного треугольника ABC. По свойству углов при основании равнобедренного треугольника ABC Треугольники и его элементытогда Треугольники и его элементыкак углы, смежные с равными углами. Значит, Треугольники и его элементыпо первому признаку равенства треугольников.

Завершить доказательство можно одним из двух способов.

1 -й способ. Поскольку Треугольники и его элементыто Треугольники и его элементыТаким образом, треугольник DBE равнобедренный по определению.

2-й способ. Поскольку Треугольники и его элементыто Треугольники и его элементыТаким образом, треугольник D BE равнобедренный по признаку равнобедренного треугольника;

Прямая и обратная теоремы

Проанализируем две предыдущие теоремы о равнобедренном треугольнике, выделив в каждой из них условие и заключение. Свойство углов равнобедренного треугольника можно сформулировать так: «Если треугольник равнобедренный, то в нем два угла (при основании) равны». Теперь становится очевидным, что условие первой теоремы («треугольник равнобедренный») — это заключение второй, а заключение первой теоремы («в треугольнике два угла равны») — это условие второй теоремы. В таком случае вторая теорема является обратной первой (прямой).

Изобразим наглядно связь прямой и обратной теорем.

ПРЯМАЯ ТЕОРЕМА

Если А то B

ОБРАТНАЯ ТЕОРЕМА

Если В, то А

Теорема, обратная данной, не обязательно верна. Рассмотрим, например, теорему о вертикальных углах, сформулировав ее так: «Если два угла вертикальные, то они равны». Понятно, что обратная теорема неверна: ведь если два угла равны, то они не обязательно вертикальные.

Немало подобных примеров можно привести и из повседневной жизни. Например, если ученик является семиклассником, то он изучает геомет рию. Обратное утверждение ошибочно: если ученик изучает геометрию, то он не обязательно семиклассник, ведь геометрию изучают и в старших классах. Попробуйте самостоятельно найти примеры прямых и обратных утверждений в других науках, изучаемых в школе.

Таким образом, пользоваться утверждением, обратным доказанной теореме, можно лишь тогда, когда оно также доказано.

Медиана, биссектриса и высота треугольника

Определение медианы, биссектрисы и высоты треугольника

Помимо сторон и углов, с треугольником связано несколько важных элементов, имеющих специальные названия.

Определение

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

На рисунке 95 отрезок ВМ является медианой треугольника ABC. В любом треугольнике можно провести три медианы — по одной из каждой вершины. Далее будет доказано, что все они пересекаются в одной точке (рис. 96)

Треугольники и его элементыТреугольники и его элементы

Определение:

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

На рисунке 97 отрезок BL — биссектриса треугольника ABC. Обратим внимание на то, что, в отличие от биссектрисы угла, являющейся лучом, биссектриса треугольника — отрезок. Очевидно, что любой треугольник имеет три биссектрисы (рис. 98). Все они также пересекаются в одной точке (этот факт будет доказан далее).

Треугольники и его элементыТреугольники и его элементы

Определение:

Высотой треугольника называется перпендикуляр. опущенный из вершины треугольника на прямую, которая содержит его противолежащую сторону.

[1] Подчеркнем, что здесь и далее, приводя утверждения, которые будут доказаны позднее, мы не будем ссылаться на них до того момента, когда они будут доказаны.

На рисунке 99 отрезок ВН — высота треугольника ABC.

По теореме о существовании и единственности перпендикуляра к прямой, из каждой вершины треугольника можно провести только одну его высоту. Высоты треугольника не обязательно лежат внутри него. В отличие от медиан и биссектрис, некоторые из высот могут совпадать со сторонами или проходить вне треугольника (рис. 100).

Высоты треугольника (или их продолжения) пересекаются в одной точке (это утверждение докажем позднее).

Треугольники и его элементы

Свойство медианы, биссектрисы и высоты равнобедренного треугольника

Теорема: (свойство медианы, биссектрисы и высоты равнобедренного треугольника)

В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.

Доказательство:

Доказательство данной теоремы состоит из трех частей.

1) Пусть BD — медиана равнобедренного треугольника ABC , проведенная к основанию АС (рис. 101, а). Докажем, что BD является также биссектрисой и высотой треугольника ABC .

Треугольники и его элементыТреугольники и его элементы

Рис. 101 Отрезок DB — медиана, биссектриса и высота равнобедренного треугольника ABC

Рассмотрим треугольники ABD и CBD . У них АВ = СВ по определению равнобедренного треугольника, Треугольники и его элементыкак углы при основании равнобедренного треугольника, AD = CD по определению медианы. Следовательно, Треугольники и его элементыпо первому признаку равенства треугольников. Из этого вытекает, что Треугольники и его элементы, то есть BD — биссектриса треугольника ABC .

Кроме того, Треугольники и его элементыа поскольку эти углы смежные, то оба они прямые. Значит, BD — высота треугольника ABC . Таким образом, отрезок BD — медиана треугольника ABC , проведенная к основанию,— является также биссектрисой и высотой треугольника.

2. Пусть теперь BD — биссектриса равнобедренного треугольника ABC, проведенная к основанию АС (рис. 101, б). Аналогично предыдущему случаю можно доказать, что BD является также медианой и высотой треугольника ABC. Действительно, в этом случае Треугольники и его элементыно второму признаку Треугольники и его элементыОтсюда AD=CD, то есть BD — медиана треугольника, и Треугольники и его элементы, то есть BD — высота треугольника.

3. Пусть BD — высота треугольника ABC . Докажем от противного, что BD является медианой и биссектрисой данного треугольника. Пусть существуют медиана Треугольники и его элементыи биссектриса Треугольники и его элементы, не совпадающие с Треугольники и его элементы— Тогда по доказанному выше отрезки Треугольники и его элементыи Треугольники и его элементытакже являются высотами треугольника. Таким образом, из точки В к прямой АС проведены три различных перпендикуляра, что противоречит теореме о существовании и единственности перпендикуляра к прямой. Из этого противоречия следует, что отрезки Треугольники и его элементыи Треугольники и его элементысовпадают,

то есть BD — медиана и биссектриса данного треугольника.

Итак, в равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.

Медиана — от латинского «медианус» — средний

В равностороннем треугольнике медиана, биссектриса и высота, проведенные из одной вершины, совпадают.

Теорема, обратная данной, также верна: если в треугольнике медиана, биссектриса и высота, проведанные из одной вершины, совпадают, то такой треугольник равнобедренный (докажите это утверждение самостоятельно).

На практике для решения задач вместо доказанной теоремы часто используют утверждение с условием совпадения лишь двух из трех указанных отрезков:

  1. если в треугольнике медиана и высота, проведенные из одной вершины, совпадают, то такой треугольник равнобедренный;
  2. если в треугольнике биссектриса и высота, проведенные из одной вершины, совпадают, то такой треугольник равнобедренный;
  3. если в треугольнике медиана и биссектриса, проведенные из одной вершины, совпадают, то такой треугольник равнобедренный. Первые два утверждения докажите самостоятельно. Третье утверждение мы рассмотрим в п. 12.3.

Пример №19

Докажите равенство равнобедренных Треугольников по углу, противолежащему основанию, и медиане, проведенной к основанию

Решение:

Пусть Треугольники и его элементыи Треугольники и его элементы— данные равнобедренные треугольники с основаниями Треугольники и его элементыи Треугольники и его элементыТреугольники и его элементы, Треугольники и его элементыи Треугольники и его элементы— Медианы этих треугольников, причем Треугольники и его элементы(рис. 102). Докажем, что Треугольники и его элементы

Рассмотрим треугольники Треугольники и его элементы. По условию Треугольники и его элементы. Поскольку по свойству медианы биссектрисы и высоты равнобедренного треугольника Треугольники и его элементыи Треугольники и его элементыявляются также биссектрисами равных углов Треугольники и его элементыи Треугольники и его элементы, то Треугольники и его элементыотрезки Треугольники и его элементыи Треугольники и его элементы— высоты равнобедренных треугольников, поэтому Треугольники и его элементы90°. Таким образом,Треугольники и его элементы, по второму признаку равенства треугольников, откуда Треугольники и его элементытогда и Треугольники и его элементы Треугольники и его элементыЗначит, треугольники Треугольники и его элементыравны по перво му признаку равенства треугольников. • . ;

Треугольники и его элементы

Дополнительные построения в геометрических задачах. Метод удвоения медианы .

Для решения некоторых геометрических задач необходимо проводить дополнительные построения, то есть достраивать отрезки и углы, не упомянутые в условии задачи. Это нужно для получения вспомогательных фигур, рассмотрение которых позволяет найти или доказать требуемое. Существуют определенные виды дополнительных построений, применяемые чаще других. Один из них мы рассмотрим в следующей задаче.

Пример №20

Если в треугольнике медиана и биссектриса, проведенные из одной вершины, совладают, то такой треугольник равнобедренный. Докажите.

Решение:

Пусть 80 — медиана и биссектриса данного треугольника ABC (рис; 103). Докажем, что треугольник ABC равнобедренный.

Треугольники и его элементы

На луче ВD от точки D отложим отрезок Треугольники и его элементыравный BD (то есть удвоим медиану ВО). Рассмотрим треугольники Треугольники и его элементыУ них АD = СD по определению медианы, Треугольники и его элементыпо построению, Треугольники и его элементыкак вертикальные. Таким образом, Треугольники и его элементыпо первому признаку равенства треугольников. Отсюда следует, что Треугольники и его элементы Треугольники и его элементы. Рассмотрим теперь треугольник Треугольники и его элементыС учетом того, что BD — биссектриса угла ABC , имеем Треугольники и его элементытогда Треугольники и его элементыПо признаку равнобедренного треугольника, треугольник Треугольники и его элементыравнобедренный с основанием Треугольники и его элементыОтсюда Треугольники и его элементыа поскольку по доказанному Треугольники и его элементыТаким образом, треугольник ABC равнобедренный, что и требовалось доказать.

[1] Здесь и далее звездочкой обозначен теоретический материал, изучение которого не является обязательным.

Проанализируем решение этой задачи. Отображение всех данных условия на рисунке не выявило набора элементов, позволяющих сразу начать доказательство. Это обусловило необходимость дополнительного построения, благодаря которому образовался вспомогательный треугольник Треугольники и его элементы. Доказав его равенство с треугольником Треугольники и его элементы, мы получили дополнительные равенства отрезков и углов и решили задачу.

Дополнительное построение состояло в удвоении отрезка BD . Такое построение используется чаще всего именно для медиан треугольников, поэтому основанн ый на нем метод доказательства называют методом удвоения медианы.

Третий признак равенства треугольников и его применение

Третий признак равенства треугольников

Применим свойства равнобедренного треугольника для доказательства третьего признака равенства треугольников.

Теорема: (третий признак равенства треугольников — по трем сторонам)

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство:

Пусть даны треугольники Треугольники и его элементыи Треугольники и его элементы, у которых Треугольники и его элементы. Докажем, что Треугольники и его элементы.

Приложим треугольник Треугольники и его элементык треугольнику Треугольники и его элементытак, чтобы вершина А1 совместилась с вершиной Треугольники и его элементы, вершина Треугольники и его элементы— с вершиной В, а точки Треугольники и его элементыи Треугольники и его элементылежали по разные стороны от прямой АВ. Возможны три случая:

  1. луч Треугольники и его элементыпроходит внутри угла АСВ (рис. 107, а);
  2. луч Треугольники и его элементыпроходит вне угла АСВ (рис. 107, б);
  3. луч Треугольники и его элементысовпадает с одной из сторон угла АСВ (рис. 107, в).

Треугольники и его элементы Треугольники и его элементыТреугольники и его элементы

Рис. Прикладывание треугольника Треугольники и его элементык треугольнику Треугольники и его элементы

Рассмотрим случаи 1 и 2, Поскольку по условию теоремы Треугольники и его элементыи Треугольники и его элементы, то треугольники Треугольники и его элементыи Треугольники и его элементыравнобедренные с основанием Треугольники и его элементы. По свойству равнобедренного треугольника Треугольники и его элементы. Тогда Треугольники и его элементыкак суммы (или разности) равных углов. Таким образом, Треугольники и его элементыпо первому признаку равенства треугольников. В случае 3 равенство углов Треугольники и его элементыи Треугольники и его элементыследует из свойства равнобедренного треугольника с основаниемТреугольники и его элементы, а дальнейшее доказательство проводится аналогично. Теорема доказана.

Обобщая признаки равенства треугольников, можно увидеть, что во всех трех признаках равенство треугольников следует из равенства трех пар соответствующих элементов. И это не случайно: как правило, треугольник можно задать (построить) именно по трем элементам, но не произвольным, а определяющим единственный треугольник. Например, треугольник однозначно определяется длинами трех его сторон (это следует из только что доказанного третьего признака). Однако, например, градусные меры трех углов не задают треугольник однозначно. Попробуйте самостоятельно построить соответствующий контрпример — два неравных треугольника с соответственно равными углами.

Пример №21

Докажите равенство треугольников по двум сторонам и медиане, проведенной к одной из них.

Решение:

Пусть Треугольники и его элементыи Треугольники и его элементы— данные треугольники с медианами Треугольники и его элементыи Треугольники и его элементы, соответственно, причем Треугольники и его элементыТреугольники и его элементы(рис. 108). Рассмотрим сначала треугольники Треугольники и его элементыи Треугольники и его элементыВ них Треугольники и его элементыи Треугольники и его элементы, по условию, Треугольники и его элементыкак половины равных сторон Треугольники и его элементыи Треугольники и его элементыто есть Треугольники и его элементыпо третьему признаку. Отсюда, в частности, следует, что Треугольники и его элементыТогда Треугольники и его элементыпо первому признаку Треугольники и его элементыпо условию, Треугольники и его элементыпо доказанному).

Треугольники и его элементы

Свойства и признаки

Проанализируем признаки равенства треугольников. Все эти утверждения одинаковы по структуре: если треугольники имеют некоторую особенность, то они равны. Эта особенность (равенство трех пар соответствующих элементов) и составляет признак равенства треугольников. Нетрудно догадаться по аналогии, что, скажем, признак параллельности прямых может выглядеть так: «Если две прямые имеют определенную особенность, то они параллельны» (вспомните, рассматривались ли ранее похожие утверждения).

Во многих геометрических утверждениях мы получаем новые особенности фигур с помощью уже известных: например, если два угла вертикальные, то они равны. В этом случае равенство является свойством вертикальных углов. По аналогии, свойство смежных углов будет иметь следующий вид: «Если два угла смежные, то они имеют определенную особенность». Нетрудно догадаться, какое из изученных утверждений является свойством смежных углов.

Отметим еще один интересный факт. Если нам дан равнобедренный треугольник, то равенство двух его углов — свойство равнобедренного треугольника. Если же из условия равенства двух углов некоторого треугольника мы делаем заключение, что этот треугольник равнобедренный, то равенство этих углов — признак равнобедренного треугольника. Таким образом, одна и та же особенность фигуры в зависимости от условия задачи может рассматриваться либо как свойство, либо как признак.

Приведем примеры свойств и признаков, не связанные с геометрией. Наличие длинной шеи является свойством жирафа (если животное — жираф, то оно имеет длинную шею). Но длинную шею имеют также и страусы, то есть не любое животное с длинной шеей — жираф. Таким образом, наличие длинной шеи не является признаком жирафа. Другой пример: повышение температуры — признак болезни (ведь если у человека высокая температура, то он болен), но повышение температуры не свойство болезни (ведь многие болезни не сопровождаются повышением температуры). И наконец, пример из арифметики: последняя цифра 0 — и свойство, и признак чисел, которые делятся на 10.

Попробуйте привести собственные примеры свойств и признаков, изучаемых в школе.

Признаки параллельности прямых

Углы, образованные при пересечении двух прямых третьей

Пусть прямая с пересекает каждую из двух прямых a и b (рис. 118). В таком случае говорят, что прямая с является секущей прямых а и b. При таком пересечении двух прямых третьей образуются пары неразвернутых углов, имеющих специальные названия:

Треугольники и его элементы

  • внутренние накрест лежащие углы лежат между прямыми а и b по разные стороны от секущей: 3 и 6, 4 и 5;
  • внутренние односторонние углы лежат между прямыми а и & по одну сторону от секущей: 3 и 5, 4 и 6;
  • соответственные углы лежат по одну сторону от секущей, причем сторона одного из них является частью стороны другого: 1 и 5, 3 и 7, 2 и 6, 4 и 8.

Признаки параллельности прямых

Вы уже изучили две теоремы, которые утверждают, что две прямые параллельны:

  1. если две прямые параллельны третьей, то они параллельны;
  2. если две прямые перпендикулярны третьей, то они параллельны.

Докажем еще несколько признаков параллельности прямых.

Теорема: (признак параллельности двух прямых, которые пересекаются секущей)

Если при пересечении двух прямых, секущей внутренние накрестлежащие углы равны; то прямые параллельны.

Доказательство:

Пусть прямая с пересекает прямые а и b в точках А и В соответственно, причем Треугольники и его элементы(рис. 119). Докажем, что Треугольники и его элементы.

Треугольники и его элементы

Если углы 1 и 2 прямые, то Треугольники и его элементыи Треугольники и его элементы. Тогда Треугольники и его элементыпо теореме о двух прямых, перпендикулярных третьей. Рассмотрим случай, когда углы 1 и 2 не прямые. Проведем из точки О — середины отрезка АВ — перпендикуляр Треугольники и его элементы, к прямой O. Пусть Н2 — точка пересечения прямых Треугольники и его элементы

Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы. У них Треугольники и его элементыпо условию, Треугольники и его элементыкак вертикальные и Треугольники и его элементыпо построению. Итак, Треугольники и его элементыпо второму признаку равенства треугольников. Отсюда Треугольники и его элементыто есть прямая Треугольники и его элементыперпендикулярна прямым а и b. Тогда Треугольники и его элементыпо теореме о двух прямых, перпендикулярных третьей. Теорема доказана.

Для доказательства параллельности прямых можно использовать не только внутренние накрест лежащие углы, но и другие пары образовавшихся углов.

Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна Треугольники и его элементы, то прямые параллельны.

Действительно, если Треугольники и его элементы(рис. 120) и по теореме о смежных углах Треугольники и его элементы, то Треугольники и его элементыТогда по доказанной теореме Треугольники и его элементы.

Треугольники и его элементы

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Действительно, если Треугольники и его элементы(рис. 121), a Треугольники и его элементыкак вертикальные, то Треугольники и его элементыТогда но доказанной теореме Треугольники и его элементы

Треугольники и его элементы

Следствия 1 и 2 можно объединить с доказанной теоремой в одно утверждение, выражающее признаки параллельности прямых.

Если при пересечении двух прямых секущей выполняется хотя бы одно из условий:

  1. внутренние накрест лежащие углы равны;
  2. сумма внутренних односторонних углов равна 180°;
  3. соответственные углы равны, то данные прямые параллельны.

Если выполняется одно из трех приведенных условий, то выполняются и два других (докажите это самостоятельно).

Пример №22

На рисунке 122 Треугольники и его элементы— биссектриса угла Треугольники и его элементыДокажите, что Треугольники и его элементы

Треугольники и его элементы

Решение:

По условию задачи треугольник Треугольники и его элементыравнобедренный с основанием Треугольники и его элементыПо свойству углов равнобедренного треугольника Треугольники и его элементыВместе с тем Треугольники и его элементытак как АС — биссектриса угла BAD. Отсюда, Треугольники и его элементы Треугольники и его элементыУглы 2 и 3 внутренние накрест лежащие при прямых Треугольники и его элементыи секущей Треугольники и его элементыПоскольку эти уг лы равны, то по признаку параллельности прямых Треугольники и его элементычто и требовалось доказать.

О существовании прямой, параллельной данной

Доказанные признаки параллельности прямых позволяют подробнее проанализировать формулировку аксиомы параллельных прямых (аксиомы Евклида, п. 4.1). В этой аксиоме утверждалась единственность прямой, проходящей через данную точку и параллельной данной прямой, но не утверждалось ее существование.

На основании признака параллельности прямых существование такой прямой можно доказать.

Пусть даны прямая АВ и точка С, не принадлежащая этой прямой (рис. 123). Проведем прямую АС. От луча СА отложим угол ACD, равный углу CAB, так, как показано на рисунке. Тогда углы ACD и CAB — внутренние накрест лежащие при прямых АВ и CD и секущей АС. По доказанному признаку AB || CD , то есть существует прямая, проходящая через точку С параллельна прямой АВ.

Треугольники и его элементы

Таким образом, мы можем объединить доказанный факт с аксиомой параллельных прямых в следующей теореме.

Теорема: (о существовании и единственности прямой, параллельной данной)

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, я притом только одну.

Вообще, аксиома Евклида и связанные с ней утверждения были предметом особого внимания ученых на протяжении многих веков. В начале позапрошлого столетия выдающийся русский математик Николай Иванович Лобачевский создал неевклидову геометрию, в которой аксиома параллельных прямых не выполняется.

Свойства углов, образованных при пересечении параллельных прямых секущей.

Теорема о свойствах углов, образованных при пересечении параллельных прямых секущей

В предыдущем параграфе мы установили соотношения углов между двумя прямыми и секущей, гарантирующие параллельность данных прямых. Но обязательно ли эти соотношения сохраняются для любой пары параллельных прямых, пересеченных секущей? Докажем утверждение, обратное признаку параллельности прямых.

Теорема: (свойства углов, образованных при пересечении параллельных прямых секущей)

Если секущая пересекает две параллельные прямые, то:

  1. внутренние накрестлежащие углы равны;
  2. сумма внутренних односторонних углов равна 180°;
  3. соответственные углы равны.

Доказательство:

Докажем первое из утверждений теоремы.

Пусть секущая с пересекает параллельные прямые а и b в точках A и В соответственно (рис. 132). Докажем методом от противного, что внутренние накрест лежащие углы при этих прямых равны.

Треугольники и его элементы

Пусть эти углы не равны. Проведем через точку А прямую Треугольники и его элементытак, чтобы внутренние накрест лежащие углы при прямых Треугольники и его элементыи b и секущей с были равны. Тогда по признаку параллельности прямых имеем Треугольники и его элементыНо Треугольники и его элементыпо условию теоремы, а по аксиоме параллельных прямых через точку А можно провести лишь одну прямую, параллельную b. Таким образом, мы получили противоречие.

Следовательно, наше предположение ошибочно, то есть внутренние накрест лежащие углы равны. Из доказанного утверждения нетрудно получить другие два утверждения теоремы (сделайте это самостоятельно).

Следствие Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой

Это следствие обоснуйте самостоятельно по рисунку 133.

Треугольники и его элементы

Пример №23

Сумма двух внутренних углов, образовавшихся при пересечении двух параллельных прямых секущей, равна 210°. Найдите все образовавшиеся углы.

Решение:

Пусть а || b, с — секущая. Внутренние углы, о которых говорится в условии, могут быть односторонними, накрест лежащими или смежными. Поскольку при пересечении параллельных прямых секущей сумма внутренних односторонних углов равна 180° и сумма смежных углов также равна 180°, то данные углы — внутренние накрест лежащие. Пусть Треугольники и его элементы(рис. 134). Поскольку Треугольники и его элементыто Треугольники и его элементыТогда:

Треугольники и его элементы°, так как углы 1 и 5 соответственные; Треугольники и его элементы, так как углы 3 и 5 внутренние односторонние; Треугольники и его элементытак как углы 2 и 3 вертикальные; Треугольники и его элементытак как углы 5 и 6 смежные; Треугольники и его элементытак как углы 7 и 3 соответственные; Треугольники и его элементытак как углы 8 и 4 соответственные.

Треугольники и его элементы

Расстояние между параллельными прямыми

Как вы уже знаете, расстояние от точки до прямой — это длина перпендикуляра, опущенного из данной точки на прямую. Можно предположить, что расстояние между параллельными прямыми тоже будет определяться с помощью перпендикуляра. Но прежде чем сформулировать определение, докажем еще одно свойство параллельных прямых.

Теорема: (о расстояниях от точек прямой до параллельной прямой)

Расстояния от любых двух точек прямой до параллельной ей прямой равны

Доказательство:

Пусть а и b — данные параллельные прямые, Треугольники и его элементы— расстояния от точек Треугольники и его элементыи Треугольники и его элементыпрямой Треугольники и его элементыдо прямой Треугольники и его элементы(рис. 135). Докажем, что

Треугольники и его элементы

Треугольники и его элементы

Поскольку по определению расстояния от точки до прямой Треугольники и его элементыи Треугольники и его элементы, то по теореме о двух прямых, перпендикулярных третьей, Треугольники и его элементы

Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементыУ них сторона Треугольники и его элементыобщая, Треугольники и его элементыкак внутренние накрест лежащие при параллельных прямых Треугольники и его элементыи Треугольники и его элементыи секущей Треугольники и его элементыкак внутренние накрест лежащие при параллельных прямых Треугольники и его элементыи Треугольники и его элементыи секущей Треугольники и его элементы. Таким образом, Треугольники и его элементыпо второму признаку равенства треугольников, откуда Треугольники и его элементыТеорема доказана.

Из только что доказанной теоремы следует, что расстояние от точки прямой а до прямой b не зависит от выбора точки, то есть одинаково для всех точек прямой a. Это позволяет сформулировать следующее определение.

Определение:

Расстоянием между параллельными прямыми называется расстояние от любой точки одной из этих прямых до другой прямой.

Таким образом, расстояние между параллельными прямыми — длина перпендикуляра, опущенного из произвольной точки одной прямой на другую прямую.

На рисунке 136 Треугольники и его элементыто есть АВ — расстояние между прямыми а и b. Заметим, что по следствию теоремы о свойствах углов, образованных при пересечении параллельных прямых секущей, Треугольники и его элементы, то есть Треугольники и его элементы— общий перпендикуляр к прямым а и b.

Треугольники и его элементы

Сумма углов треугольника

Теорема о сумме углов треугольника и ее следствия

Теорема: (о сумме углов треугольника)

Сумма углов треугольника равна 180°.

Доказательство:

Пусть ABC — произвольный треугольник. Докажем, что Треугольники и его элементыПроведем через вершину В прямую b , параллельную АС (рис. 141). Тогда углы 1 и 4 равны как внутренние накрест лежащие при параллельных прямых b и АС и секущей АВ. Аналогично Треугольники и его элементыкак внутренние накрест лежащие при тех же параллельных прямых, но секущей ВС. Имеем: Треугольники и его элементыТеорема доказана.

Треугольники и его элементы

В любом треугольнике по крайней мере два угла острые.

Действительно, если треугольник имел бы два неострых угла (тупых или прямых), то сумма всех углов превышала бы 180°, что противоречит доказанной теореме.

Каждый угол равностороннего треугольника равен 60°.

Поскольку все углы равностороннего треугольника равны, то каждый из них равен Треугольники и его элементы.

Рассмотрим еще одно важное утверждение, которое следует из доказанной теоремы.

Пример №24

Если в равнобедренном треугольнике один из углов равен 60°, то этот треугольник равносторонний. Докажите.

Решение:

Пусть ABC — равнобедренный треугольник с основанием АС. Рассмотрим два случая.

  1. Пусть угол 60° — один из углов при основании, например Треугольники и его элементы(рис. 142, а). Тогда Треугольники и его элементыкак углы при основании равнобедренного треугольника. Таким образом, Треугольники и его элементыТреугольники и его элементыЗначит, Треугольники и его элементыто есть ABC — равносторонний треугольник.
  2. Пусть угол 60° — угол, противолежащий основанию, то есть Треугольники и его элементы(рис. 142, б). Тогда Треугольники и его элементыкак углы при основании равнобедренного треугольника. Каждый из этих углов равен (180° — 60°) : 2 = 60°. Снова имеем, что все углы треугольника ABC равны, значит, этот треугольник равносторонний.

Только что решенная задача является опорной, то есть на нее можно ссылаться при решении других задач, кратко пересказывая ее содержание. В дальнейшем условия таких задач в учебнике будут выделены полужирным шрифтом и словом «опорная».

Виды треугольников по величине углов. Классификация

Как уже было доказано, любой треугольник имеет не менее двух острых углов. Это означает, что возможны три случая:

  1. все углы треугольника острые — остроугольный треугольник;
  2. два угла треугольника острые, а третий угол прямой — прямоугольный треугольник;
  3. два угла треугольника острые, а третий угол тупой — тупоугольный треугольник.

Исходя из этого, все треугольники можно разделить по величине углов на три вида: остроугольные, прямоугольные и тупоугольные (рис. 143).

Треугольники и его элементы

Обратим внимание на то, что величина углов — это признак, по которому любой данный треугольник можно отнести лишь к одному из трех названных видов. Такое деление объектов на отдельные виды по определенному признаку называют классификацией. Признак, по которому осуществляется классификация, является ее основанием. Так, треугольники можно разделить и по другому основанию — длине сторон — на разносторонние (то есть не имеющие равных сторон), равнобедренные, но не равносторонние (у которых только две стороны равны) и равносторонние треугольники.

Классификация считается правильной, если любой из объектов можно отнести лишь к одному из названных классов. Так, неправильно будет разделять прямые на плоскости по взаимному расположению на параллельные, пересекающиеся и перпендикулярные (ведь перпендикулярность — частный случай пересечения). Ошибочно подразделять по величине неразвернутые углы на острые и тупые, поскольку есть еще и прямые углы.

Очень важно проводить классификацию лишь по одному основанию. Например, неверным было бы разделять треугольники на остроугольные, прямоугольные, тупоугольные и равнобедренные, ведь равнобедренным может быть и остроугольный, и прямоугольный, и тупоугольный треугольник. Допустить такую ошибку — то же самое, что разделить всех людей на мужчин, женщин и учителей.

Примеры классификаций нетрудно найти и в других науках. Так, филологи делят члены предложения на главные (подлежащее и сказуемое) и второстепенные (дополнение, определение и обстоятельство). Попробуйте найти примеры классификации в физике, географии, биологии.

Внешний угол треугольника

Определение:

Внешним углом треугольника называется угол, смежный с внутренним углом данного треугольника.

На рисунке 144 угол DAB — внешний угол треугольника ABC при вершине А.

Треугольники и его элементы

Очевидно, что при любой вершине треугольника можно построить два внешних угла, которые по отношению друг к другу являются вертикальными (рис. 145).

Треугольники и его элементы

Теорема: (о внешнем угле треугольника)

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Доказательство:

Пусть углы 1, 2 и 3 — внутренние углы треугольника ABC, a Треугольники и его элементы— внешний угол, смежный с углом 1 (рис. 146). По теореме о сумме углов треугольника Треугольники и его элементыС другой стороны, по теореме о смежных углах Треугольники и его элементыОтсюда, Треугольники и его элементычто и требовалось доказать.

Треугольники и его элементы

Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360°.

Действительно, по доказанной теореме (рис. 146) Треугольники и его элементыТогда для их суммы имеем: Треугольники и его элементыТреугольники и его элементыТреугольники и его элементы

Прямоугольные треугольники

Элементы прямоугольного треугольника

Как известно, прямоугольный треугольник имеет один прямой и два острых угла. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны — катетами. На рисунке 147 в треугольнике Треугольники и его элементы, AC — гипотенуза, АВ и ВС — катеты.

Треугольники и его элементы

Из теоремы о сумме углов треугольника следует: сумма острых углов прямоугольного трек- угольника равна 90°. Имеет место и обратное утверждение — признак прямоугольного треугольника: если в треугольнике сумма двух углов равна 90°, то этот треугольник прямоугольный.

Признаки равенства прямоугольных треугольников

Пользуясь признаками равенства треугольников и теоремой о сумме углов треугольника, можно сформулировать признаки равенства, характерные только для прямоугольных треугольников.

Приведем сначала два из них.

Признак равенства прямоугольных треугольников по двум катетам (рис. 148) Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.

Треугольники и его элементы

Признак равенства прямоугольных треугольников по катету и прилежащему острому углу (рис. 149)

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Треугольники и его элементы

Данные признаки — частные случаи первого и второго признаков равенства треугольников.

Следующие два признака нетрудно получить из второго признака равенства треугольников, используя теорему о сумме углов треугольника.

Признак равенства прямоугольных треугольников по катету и противолежащему углу (рис. 150) Если катет и противолежащий ему угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему углу другого прямоугольного треугольника, то такие треугольники равны.

Треугольники и его элементы

Признак равенства прямоугольных треугольников по гипотенузе и острому углу (рис. 151)

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Треугольники и его элементы

Действительно, если данный треугольники имеют по равному острому углу Треугольники и его элементы, то другие острые углы этих треугольников равны Треугольники и его элементы, то есть также соответственно равны.

Еще один признак равенства прямоугольных треугольников докажем отдельно.

Гипотенуза — от греческого «гипотейнуса» — стягивающая. Название связано со способом построения прямоугольных реугольников натягиванием бечевки.

Теорема: (признак равенства прямоугольных треугольников по гипотенузе и катету)

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Доказательство:

Пусть Треугольники и его элементы— данные прямоугольные треугольники, в которых Треугольники и его элементы90° , Треугольники и его элементы(рис. 152). Докажем, что Треугольники и его элементы

На продолжениях сторон Треугольники и его элементыи Треугольники и его элементыотложим отрезки Треугольники и его элементыи Треугольники и его элементы, равные катетам Треугольники и его элементыи Треугольники и его элементысоответственно. Тогда Треугольники и его элементыи Треугольники и его элементы, по двум катетам. Таким образом, Треугольники и его элементы. Это значит, что Треугольники и его элементыпо трем сторонам. Отсюда Треугольники и его элементыИ наконец, Треугольники и его элементы, по гипотенузе и острому углу. Теорема доказана.

Обратим внимание на дополнительное построение, состоящее в достраивании прямоугольного треугольника до равнобедренного.

Такой прием позволяет применять свойства равнобедренного треугольника при решении задач, в условиях которых о равнобедренном треугольнике речь не идет.

Треугольники и его элементыТреугольники и его элементы

Рис. 152. Прямоугольные треугольники ABC и Треугольники и его элементыравны по гипотенузе и катету.

Прямоугольный треугольник с углом 30°

Прямоугольный треугольников котором один из острых углов равен 30°, имеет полезное свойство.

Опорная задача

В прямоугольном треугольнике катет, противолежащий углу 30°, равен половине гипотенузы. Докажите.

Решение

Пусть в треугольнике Треугольники и его элементы. Докажем, что Треугольники и его элементыОчевидно, что в треугольнике Треугольники и его элементыОтложим на продолжении стороны Треугольники и его элементыотрезок Треугольники и его элементы, равный Треугольники и его элементы(рис. 153). Прямоугольные треугольники Треугольники и его элементыравны по двум катетам. Отсюда следует, что Треугольники и его элементыи Треугольники и его элементы Треугольники и его элементыТаким образом, треугольник Треугольники и его элементыравносторонний, а отрезок Треугольники и его элементы— его медиана, то есть Треугольники и его элементычто и требовалось доказать.

Треугольники и его элементы

Имеет место также обратное утверждение (опорное): если катет прямоугольного треугольника равен половине гипотенузы, то угол, противолежащий данному катету, равен 30°.

Попробуйте доказать это утверждение самостоятельно при помощи дополнительного построения, аналогичного только что описанному.

Катет — от греческого «катетос» — отвес.

Сравнение сторон и углов треугольника

Соотношения между сторонами и углами треугольника

Теорема: (соотношения между сторонами и углами треугольника)

  1. против большей стороны лежит больший угол;
  2. против большего угла лежит большая сторона.

Доказательство:

Данная теорема содержит два утверждения — прямое и обратное. Докажем каждое из них отдельно.

1. Пусть в треугольнике Треугольники и его элементы. Докажем, что Треугольники и его элементы. Отложим на стороне АВ отрезок AD, равный стороне АС (рис. 156). Поскольку Треугольники и его элементыто точка D лежит между точками А к В, значит, угол 1 является частью угла С, то есть Треугольники и его элементыОчевидно, что треугольник ADC равнобедренный с основанием DC, откуда Треугольники и его элементыКроме того, угол 2 — внешний угол треугольника Треугольники и его элементы, поэтому Треугольники и его элементы. Следовательно, имеем: Треугольники и его элементыоткуда Треугольники и его элементы

2. Пусть в треугольнике Треугольники и его элементыДокажем от противного, что Треугольники и его элементы. Если это не так, то Треугольники и его элементыили Треугольники и его элементы. В первом случае треугольник ABC равнобедренный с основанием ВС, то есть Треугольники и его элементы. Во втором случае, по только что доказанному утверждению, против большей стороны должен лежать больший угол, то есть Треугольники и его элементы. В обоих случаях имеем противоречие условию Треугольники и его элементы. Таким образом, наше предположение неверно, то есть Треугольники и его элементы. Теорема доказана.

Треугольники и его элементы

В тупоугольном треугольнике сторона, лежащая против тупого угла, — наибольшая.

В прямоугольном треугольнике гипотенуза больше катета.

Неравенство треугольника

Теорема: (неравенство треугольника)

В треугольнике длина каждой стороны меньше суммы длин двух других сторон.

Доказательство:

Рассмотрим произвольный треугольник ABC и докажем, что Треугольники и его элементы. Отложим на продолжении стороны АВ отрезок BD, равный стороне ВС (рис. 157). Треугольник BСD равнобедренный с основанием CD, откуда Треугольники и его элементыНо угол 2 является частью угла ACD, то есть Треугольники и его элементыТаким образом, в треугольнике Треугольники и его элементы. Учитывая соотношение между сторонами и углами тре угольника, имеем: Треугольники и его элементыТеорема доказана.

Треугольники и его элементы

Если для трех точек А, В, С справедливо равенство АС = АВ + ВС, то эти тонки лежат на одной прямой, причем точка В лежит между точками А и С.

Действительно, если точка В не лежит на прямой АС, то по неравенству треугольника АС Треугольники и его элементы АВ + ВС . Если точка В лежит на прямой АС вне отрезка АС, это неравенство также очевидно справедливо. Остается единственная возможность: точка В лежит на отрезке АС.

Неравенство треугольника позволяет проанализировать возможность построения треугольника с заданными сторонами. В частности, если хотя бы одно из трех положительных чисел а, b, с больше или равно сумме двух других, то построить треугольник со сторонами а, b, с невозможно.

С неравенством треугольника связана классическая задача о нахождении кратчайшего пути на плоскости. Ее решение было известно еще великому древнегреческому ученому Архимеду (287—212 гг. до н. э.).

Пример №25

Точки А и В лежат по одну сторону от прямой с. Найдите на данной прямой такую точку С, чтобы сумма расстояний АС + СВ была наименьшей (рис. 158).

Треугольники и его элементы

Решение:

Опустим из точки А перпендикуляр АО к прямой с и отложим на его продолжении отрезок Треугольники и его элементыравный Треугольники и его элементыДля любой точки С прямой с прямоугольные треугольники Треугольники и его элементыравны по двум катетам, откуда Треугольники и его элементыОчевидно, что по следствию неравенства треугольника сумма Треугольники и его элементыбудет наименьшей в случае, когда точки Треугольники и его элементылежат на одной прямой. Таким образом, искомая точка должна быть точкой пересечения отрезка Треугольники и его элементыс прямой с.

Отметим, что в условиях данной задачи прямые АС и СB образуют с прямой с равные углы. Именно так распространяется луч света, который исходит из точки A, отражается от прямой с и попадает в точку В. Физики в таком случае говорят, что угол падения светового луча равен углу отражения.

Историческая справка

Аксиомы Евклида. Аксиомы, сформулированные Евклидом, легли в основу современной геометрии. Ученые на протяжении более двух тысяч лет исследовали, возможно ли доказать некоторые из евклидовых постулатов (аксиом), опираясь на другие. Особое внимание вызывала аксиома параллельных прямых (аксиома Евклида). Среди великих геометров прошлого не было, пожалуй, ни одного, кто не попытался бы доказать ее как теорему. И только в начале XIX века выдающийся русский математик Николай Иванович Лобачевский (1792—1856) доказал, что эту аксиому невозможно вывести из других аксиом.

Неевклидова геометрия. Лобачевский создал другую, неевклидову геометрию. По Лобачевскому, прямая, параллельная данной прямой и проходящая через данную точку вне ее, не является единственной. Большинство современников это открытие не приняли. Такая же судьба постигла и работы других ученых, получивших аналогичные результаты: венгра Яноша Больяи и немца Карла Гаусса. И только через столетие неевклидова геометрия была признана и оценена как выдающееся научное открытие.

Треугольники и его элементы

Становление геометрической аксиоматики. В XX в. исследования вопросов аксиоматического построения геометрии вышли на качественно новый уровень. Немецкий математик Давид Гильберт (1862—1943) обобщил и усовершенствовал систему евклидовых аксиом. Авторский вариант геометрических аксиом, разработанный на основе трудов Евклида и Гильберта, предложил наш соотечественник Алексей Васильевич Погорелов (1919-2002).

Геометрия треугольников. Евклид ввел понятие о равенстве геометрических фигур, совмещаемых наложением. В исследованиях древнегреческих геометров многие задачи и теоремы сводились к доказательству равенства треугольников (доказательство второго признака равенства треугольников приписывают Фалесу). Грекам была известна и теорема о сумме углов треугольника (впервые она встречается в комментариях Прокла к «началам» Евклида).

Треугольники и его элементы

Геометрия треугольника стала основой для изучения более сложных видов многоугольников, которые можно разбить на треугольники.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Справочный материал по треугольнику

Треугольники

Треугольник и его элементы. Равные треугольники

  • ✓ Три точки А, В и С, не лежащие на одной прямой, соединены отрезками (рис. 245). Образовавшаяся фигура ограничивает часть плоскости, которую вместе с отрезками АВ, ВС и СА называют треугольником. Точки А, В, С называют вершинами, а отрезки АВ, ВС, СА — сторонами треугольника.

Треугольники и его элементы

  • ✓ Треугольник называют и обозначают по его вершинам.
  • ✓ В треугольнике АВС угол В называют углом, противолежащим стороне АС, а углы А и С — углами, прилежащими к стороне АС.
  • ✓ Периметром треугольника называют сумму длин всех его сторон.
  • ✓ Треугольник называют остроугольным, если все его углы острые; прямоугольным, если один из его углов прямой; тупоугольным, если один из его углов тупой.
  • ✓ Сторону прямоугольного треугольника, противолежащую прямому углу, называют гипотенузой, а стороны, прилежащие к прямому углу, — катетами.
  • ✓ Неравенство треугольника. Каждая сторона треугольника меньше суммы двух других его сторон.
  • ✓ Два треугольника называют равными, если их можно совместить наложением. Те пары сторон и углов, которые совмещаются при наложении равных треугольников, называют соответственными сторонами и соответственными углами.
  • ✓ В треугольнике против равных сторон лежат равные углы.
  • ✓ В треугольнике против равных углов лежат равные стороны.
  • ✓ В треугольнике против большей стороны лежит больший угол, и наоборот, против большего угла лежит большая сторона.

Высота, медиана, биссектриса треугольника

  • ✓ Перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону, называют высотой треугольника.
  • ✓ Отрезок, соединяющий вершину треугольника с серединой противолежащей стороны, называют медианой треугольника.
  • ✓ Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противолежащей стороны, называют биссектрисой треугольника.

Признаки равенства треугольников

  • ✓ Первый признак равенства треугольников: по двум сторонам и углу между ними. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
  • ✓ Второй признак равенства треугольников: по стороне и двум прилежащим к ней углам. Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
  • ✓ Третий признак равенства треугольников: по трем сторонам. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.

Равнобедренный треугольник и его свойства. Равносторонний треугольник

  • ✓ Треугольник, у которого две стороны равны, называют равнобедренным.
  • ✓ Равные стороны треугольника называют боковыми сторонами, а третью сторону — основанием равнобедренного треугольника.
  • ✓ Вершиной равнобедренного треугольника называют общую точку его боковых сторон.

✓ В равнобедренном треугольнике:

  • 1) углы при основании равны;
  • 2) биссектриса треугольника, проведенная к его основанию, является медианой и высотой треугольника.

✓ Треугольник, у которого все стороны равны, называют равносторонним.

✓ В равностороннем треугольнике:

  • 1) все углы равны;
  • 2) биссектриса, высота и медиана, проведенные из одной вершины, совпадают.

Признаки равнобедренного треугольника

  • ✓ Если в треугольнике два угла равны, то этот треугольник равнобедренный.
  • ✓ Если медиана треугольника является его высотой, то этот треугольник равнобедренный.
  • ✓ Если биссектриса треугольника является его высотой, то этот треугольник равнобедренный.
  • ✓ Если медиана треугольника является его биссектрисой, то этот треугольник равнобедренный.

Сумма углов треугольника. Внешний угол треугольника

  • ✓ Сумма углов треугольника равна 180°.
  • ✓ Среди углов треугольника по крайней мере два угла острые.
  • ✓ Внешним углом треугольника называют угол, смежный с углом этого треугольника.
  • ✓ Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
  • ✓ Внешний угол треугольника больше каждого из углов треугольника, не смежных с ним.

Средняя линия треугольника и ее свойства

Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

На рисунке 105 Треугольники и его элементы— средняя линия треугольника Треугольники и его элементы

Теорема 1 (свойство средней линии треугольника). Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Доказательство:

Пусть Треугольники и его элементы— средняя линия треугольника Треугольники и его элементы(рис. 105). Докажем, что Треугольники и его элементыи Треугольники и его элементы

1) Проведем через точку Треугольники и его элементыпрямую, параллельную Треугольники и его элементыПо теореме Фалеса она пересекает сторону Треугольники и его элементыв ее середине, то есть в точке Треугольники и его элементыСледовательно, эта прямая содержит среднюю линию Треугольники и его элементыПоэтому Треугольники и его элементы

2) Проведем через точку Треугольники и его элементыпрямую, параллельную Треугольники и его элементыкоторая пересекает Треугольники и его элементыв точке Треугольники и его элементыТогда Треугольники и его элементы(по теореме Фалеса). Четырехугольник Треугольники и его элементы— параллелограмм.

Треугольники и его элементы(по свойству параллелограмма), но Треугольники и его элементы

Поэтому Треугольники и его элементы

Треугольники и его элементы

Пример №26

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма, один из углов которого равен углу между диагоналями четырехугольника.

Доказательство:

Пусть Треугольники и его элементы— данный четырехугольник, а точки Треугольники и его элементы— середины его сторон (рис. 106). Треугольники и его элементы— средняя линия треугольника Треугольники и его элементыпоэтому Треугольники и его элементыи Треугольники и его элементыАналогично Треугольники и его элементы

Таким образом, Треугольники и его элементыТогда Треугольники и его элементы— параллелограмм (по признаку параллелограмма).

Треугольники и его элементы— средняя линия треугольника Треугольники и его элементыПоэтому Треугольники и его элементыСледовательно, Треугольники и его элементы— также параллелограмм, откуда: Треугольники и его элементы

Рассмотрим свойство медиан треугольника.

Теорема 2 (свойство медиан треугольника). Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2 : 1, считая от вершины треугольника.

Треугольники и его элементы

Доказательство:

Пусть Треугольники и его элементы— точка пересечения медиан Треугольники и его элементыи Треугольники и его элементытреугольника Треугольники и его элементы(рис. 107).

1) Построим четырехугольник Треугольники и его элементыгде Треугольники и его элементы— середина Треугольники и его элементы— середина Треугольники и его элементы

2) Треугольники и его элементы— средняя линия треугольника

Треугольники и его элементыпоэтому Треугольники и его элементыи Треугольники и его элементы

3) Треугольники и его элементы— средняя линия треугольника Треугольники и его элементыпоэтому Треугольники и его элементыи Треугольники и его элементы

4) Следовательно, Треугольники и его элементыи Треугольники и его элементыЗначит, Треугольники и его элементы— параллелограмм (по признаку параллелограмма).

5) Треугольники и его элементы— точка пересечения диагоналей Треугольники и его элементыи Треугольники и его элементыпараллелограмма Треугольники и его элементыпоэтому Треугольники и его элементыНо Треугольники и его элементы Треугольники и его элементыТогда Треугольники и его элементыи Треугольники и его элементыСледовательно, точка Треугольники и его элементыделит каждую из медиан Треугольники и его элементыи Треугольники и его элементыв отношении 2:1, считая от вершин Треугольники и его элементыи Треугольники и его элементысоответственно.

6) Точка пересечения медиан Треугольники и его элементыи Треугольники и его элементыдолжна также делить в отношении 2 : 1 каждую медиану. Поскольку существует единственная точка — точка Треугольники и его элементыкоторая в таком отношении делит медиану Треугольники и его элементыто медиана Треугольники и его элементытакже проходит через эту точку.

7) Следовательно, три медианы треугольника пересекаются в одной точке и этой точкой делятся в отношении 2:1, считая от вершины треугольника.

Точку пересечения медиан еще называют центром масс треугольника, или центроидом треугольника.

Треугольник и его элементы

Треугольником называют фигуру, состоящую из трех точек, которые не лежат на одной прямой, и трех отрезков, соединяющих эти точки (рис. 267).

Точки Треугольники и его элементывершины треугольника; отрезки Треугольники и его элементы Треугольники и его элементыстороны треугольника; Треугольники и его элементы Треугольники и его элементыуглы треугольника.

Треугольники и его элементы

Периметром треугольника называют сумму длин всех его сторон. Треугольники и его элементы

Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

На рисунке 268 Треугольники и его элементы— медиана треугольника Треугольники и его элементы

Биссектрисой треугольника называют отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противолежащей стороны.

На рисунке 269 Треугольники и его элементы— биссектриса треугольника Треугольники и его элементы

Высотой треугольника называют перпендикуляр, проведенный из вершины треугольника на прямую, содержащую его противолежащую сторону.

Треугольники и его элементы

На рисунке 270 Треугольники и его элементы— высота Треугольники и его элементыСумма углов треугольника равна 180°.

Неравенство треугольника. Каждая сторона треугольника меньше суммы двух других сторон.

В треугольнике: 1) против большей стороны лежит больший угол; 2) против большего угла лежит большая сторона.

Признаки равенства треугольников

Первый признак равенства треугольников (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 271).

Треугольники и его элементы

Второй признак равенства треугольников (по стороне и двум прилежащим к ней углам). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 272).

Треугольники и его элементы

Третий признак равенства треугольников (по трем сторонам ). Если три стороны одного треугольника равны трем сторонам другого, то такие треугольники равны (рис. 273).

Треугольники и его элементы

Виды треугольников

Треугольник называют равнобедренным, если две его стороны равны.

На рисунке 274 Треугольники и его элементы— равнобедренный, Треугольники и его элементыи Треугольники и его элементы— его боковые стороны, Треугольники и его элементыоснование.

Свойство углов равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны.

Треугольники и его элементы

Признак равнобедренного треугольника. Если в треугольнике два угла равны, то он равнобедренный.

Треугольник, все стороны которого равны, называют равносторонним.

На рисунке 275 Треугольники и его элементы— равносторонний.

Свойство углов равностороннего треугольника. Каждый угол равностороннего треугольника равен 60°.

Признак равностороннего треугольника. Если в треугольнике все углы равны, то он равносторонний.

Треугольник, все стороны которого имеют разную длину, называют разносторонним.

Свойство биссектрисы равнобедренного треугольника. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

На рисунке 276 биссектриса Треугольники и его элементыпроведенная к основанию Треугольники и его элементыравнобедренного треугольника Треугольники и его элементыявляется его медианой и высотой.

В зависимости от углов рассматривают следующие виды треугольников:

  • остроугольные (все углы которого — острые — рис. 277);
  • прямоугольные (один из углов которых — прямой, а два других — острые — рис. 278);
  • тупоугольные (один из углов которых — тупой, а два других — острые — рис. 279).

Треугольники и его элементы

Внешний угол треугольника

Внешним углом треугольника называют угол, смежный с углом этого треугольника.

На рисунке 280 Треугольники и его элементы— внешний угол треугольника Треугольники и его элементы

Свойство внешнего угла треугольника. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, то есть Треугольники и его элементы

Треугольники и его элементы

Прямоугольные треугольники

Если Треугольники и его элементыто Треугольники и его элементы— прямоугольный (рис. 281). Треугольники и его элементыи Треугольники и его элементыкатеты прямоугольного треугольника; Треугольники и его элементыгипотенуза прямоугольного треугольника.

Свойства прямоугольных треугольников:

  1. Сумма острых углов прямоугольного треугольника равна 90°.
  2. Гипотенуза больше любого из катетов.
  3. Катет, противолежащий углу 30°, равен половине гипотенузы.
  4. Если катет равен половине гипотенузы, то противолежащий ему угол равен 30°.
  5. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине.

Признаки равенства прямоугольных треугольников:

  1. По двум катетам. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
  2. По катету и прилежащему острому углу. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.
  3. По гипотенузе и острому углу. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
  4. По катету и противолежащему углу. Если катет и противолежащий ему угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему углу другого, то такие треугольники равны.
  5. По катету и гипотенузе. Если катет и гипотенуза одного прямоугольного треугольника равны соответственно катету и гипотенузе другого, то такие треугольники равны.

Видео:ЕГЭ МАТЕМАТИКА (профиль) | Треугольник и его элементы | Часть 1Скачать

ЕГЭ МАТЕМАТИКА (профиль)  | Треугольник и его элементы | Часть 1

Всё о треугольнике

Как, не накладывая треугольники один на другой, узнать, что они равны? Какими особыми свойства ми обладают равнобедренный и равносторонний треугольники? Как «устроена» теорема?

На эти и многие другие вопросы вы найдете ответы в данном параграфе.

Равные треугольники. Высота, медиана, биссектриса треугольника

Рассмотрим три точки Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы, не лежащие на одной прямой. Соединим их отрезками Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы. Полученная фигура ограничивает часть плоскости, выделенную на рисунке 109 зеленым цветом. Эту часть плоскости вместе с отрезками Треугольники и его элементы, Треугольники и его элементыи Треугольники и его элементыназывают треугольником. Точки Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементыназывают вершинами, а отрезки Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементысторонами треугольника.

Треугольники и его элементы

Треугольник называют и обозначают по его вершинам. Треугольник, изображенный на рисунке 109, обозначают так: Треугольники и его элементы, или Треугольники и его элементы, или Треугольники и его элементыи т. д. (читают: «треугольник Треугольники и его элементы, треугольник Треугольники и его элементы» и т. д.). Углы Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы(рис. 110) называют углами треугольника Треугольники и его элементы.

В треугольнике Треугольники и его элементы, например, угол Треугольники и его элементыназывают углом, противолежащим стороне Треугольники и его элементы, углы Треугольники и его элементыи Треугольники и его элементы— углами, прилежащими к стороне Треугольники и его элементы, сторону Треугольники и его элементыстороной, противолежащей углу Треугольники и его элементы, стороны Треугольники и его элементыи Треугольники и его элементысторонами, прилежащими к углу Треугольники и его элементы(рис. 110).

Треугольники и его элементы

Определение. Периметром треугольника называют сумму длин всех его сторон.

Например, для периметра треугольника Треугольники и его элементыиспользуют обозначение Треугольники и его элементы.

Определение. Треугольник называют прямоугольным, если один из его углов прямой; тупоугольным, если один из его углов тупой. Если все углы острые, то треугольник называют остроугольным (рис. 111).

Треугольники и его элементы

Теорема7.1 (неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.

Доказательство: Рассмотрим Треугольники и его элементы(рис. 109). Точка Треугольники и его элементыне принадлежит отрезку Треугольники и его элементы. Тогда в силу основного свойства длины отрезка Треугольники и его элементы. Аналогично доказывают остальные два неравенства: Треугольники и его элементы, Треугольники и его элементы.

Из доказанной теоремы следует, что если ZK длина одного из трех данных отрезков не меньше суммы длин двух других, то эти отрезки не могут служить сторонами треугольника (рис. 112).

Треугольники и его элементы

Если любой из трех данных отрезков меньше суммы двух других, то эти отрезки могут служить сторонами треугольника.

Определение. Два треугольника называют равными, если их можно совместить наложением.

Треугольники и его элементы

На рисунке 113 изображены равные треугольники Треугольники и его элементыи Треугольники и его элементы. Записывают: Треугольники и его элементыТреугольники и его элементы. Эти треугольники можно совместить так, что вершины Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементыи Треугольники и его элементысовпадут. Тогда можно записать: Треугольники и его элементы, Треугольники и его элементыТреугольники и его элементы.

Те стороны и те углы, которые совмещаются при наложении треугольников, называют соответственными сторонами и соответственными углами. Так, на рисунке 113 углы Треугольники и его элементыи Треугольники и его элементы, стороны Треугольники и его элементыи Треугольники и его элементы— соответственные.

Обычно на рисунках равные стороны отмечают одинаковым количеством черточек, а равные углы — одинаковым количеством дуг. На рисунке ИЗ таким способом отмечены соответственные стороны и углы.

Заметим, что в равных треугольниках против соответственных углов лежат соответственные стороны, и наоборот: против соответственных сторон лежат соответственные углы.

То, что для каждого треугольника существует равный ему треугольник, обеспечивает такое основное свойство равенства треугольников. Для данного треугольника Треугольники и его элементыи луча Треугольники и его элементысуществует треугольник Треугольники и его элементыравный треугольнику Треугольники и его элементы, такой, что Треугольники и его элементыи сторона Треугольники и его элементыпринадлежит лучу Треугольники и его элементы, а вершина Треугольники и его элементылежит в заданной полуплоскости относительно прямой Треугольники и его элементы(рис. 114).

Треугольники и его элементы

Теорема 7.2. Через точку, не принадлежащую данной прямой, проходит только одна прямая, перпендикулярная данной.

Доказательство: Рассмотрим прямую Треугольники и его элементыи не принадлежащую ей точку Треугольники и его элементы(рис. 115). Предположим, что через точку Треугольники и его элементыпроходят две прямые Треугольники и его элементыи Треугольники и его элементы, перпендикулярные прямой Треугольники и его элементы.

Треугольники и его элементы

В силу основного свойства равенства треугольников существует треугольник Треугольники и его элементы, равный треугольнику Треугольники и его элементы(рис. 116). Тогда Треугольники и его элементы. Отсюда Треугольники и его элементы, а значит, точки Треугольники и его элементы, Треугольники и его элементы( лежат на одной прямой.

Аналогично доказывают, что точки Треугольники и его элементытакже лежат на одной прямой. Но тогда прямые Треугольники и его элементыи Треугольники и его элементыимеют две точки пересечения: Треугольники и его элементыи Треугольники и его элементы. А это противоречит теореме 1.1. Следовательно, наше предположение неверно.

Треугольники и его элементы

Возможно, вы заметили, что определения равных отрезков, равных углов и равных треугольников очень похожи. Поэтому целесообразно принять следующее

Определение. Две фигуры называют равными, если их можно совместить наложением.

Треугольники и его элементы

На рисунке 117 изображены равные фигуры Треугольники и его элементыи Треугольники и его элементы. Пишут: Треугольники и его элементы. Понятно, что любые две прямые (два луча, две точки).

Определение. Перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противоположную сторону, называют высотой треугольника.

Треугольники и его элементы

На рисунке 118 отрезки Треугольники и его элементыи Треугольники и его элементы— высоты треугольника Треугольники и его элементы. Определение. Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называют медианой треугольника.

Треугольники и его элементы

На рисунке 119 отрезок Треугольники и его элементы— медиана треугольника Треугольники и его элементы.

Определение. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называют биссектрисой треугольника.

Треугольники и его элементы

На рисунке 120 отрезок Треугольники и его элементы— биссектриса треугольника Треугольники и его элементы.

Далее, говоря «биссектриса угла треугольника», будем иметь в виду биссектрису треугольника, проведенную из вершины этого угла. Ясно, что каждый треугольник имеет три высоты, три медианы и три биссектрисы.

Часто длины сторон, противолежащих углам Треугольники и его элементы, обозначают соответственно Треугольники и его элементы. Длины высот обозначают Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы, медиан — Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы, биссектрис — Треугольники и его элементы. Индекс показывает, к какой стороне проведен отрезок (рис. 121).

Треугольники и его элементы

Первый и второй признаки равенства треугольников

Если для треугольников Треугольники и его элементыи Треугольники и его элементывыполняются шесть условий Треугольники и его элементы, Треугольники и его элементы,Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементыТреугольники и его элементы, Треугольники и его элементыто очевидно, что эти треугольники совпадут при наложении, значит, они равны. Попробуем уменьшить количество условий. Например, оставим лишь два равенства: Треугольники и его элементыи Треугольники и его элементы. Но тогда треугольники не обязательно окажутся равными (рис. 127).

Треугольники и его элементы

Как же сократить список требований до минимума, но при этом сохранить равенство треугольников? На этот вопрос отвечают теоремы, которые называют признаками равенства треугольников.

Теорема 8.1 (первый признак равенства треугольников: по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум, сторонам и углу между ними другого треугольника, то такие треугольники равны.

Треугольники и его элементы

Доказательство: Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементыу которых Треугольники и его элементы(рис. 128). Докажем, что Треугольники и его элементыТреугольники и его элементы

Наложим Треугольники и его элементына Треугольники и его элементытак, чтобы луч Треугольники и его элементысовместился с лучом Треугольники и его элементы, а луч Треугольники и его элементысовместился с лучом Треугольники и его элементы. Это можно сделать, так как по условию Треугольники и его элементыПоскольку по условию Треугольники и его элементыи Треугольники и его элементы, то при таком наложении сторона Треугольники и его элементысовместится со стороной Треугольники и его элементы, а сторона Треугольники и его элементы— со стороной Треугольники и его элементы. Следовательно, Треугольники и его элементыи Треугольники и его элементыполностью совместятся, значит, они равны.

Определение. Прямую, перпендикулярную отрезку и проходящую через его середину, называют серединным перпендикуляром отрезка.

Треугольники и его элементы

На рисунке 129 прямая а является серединным перпендикуляром отрезка Треугольники и его элементы.

Теорема 8.2. Каждая точка серединного перпендикуляра отрезка равноудалена от концов этого отрезка.

Треугольники и его элементы

Доказательство: Пусть Треугольники и его элементы— произвольная точка серединного перпендикуляра Треугольники и его элементыотрезка Треугольники и его элементы, точка Треугольники и его элементы— середина отрезка Треугольники и его элементы. Надо доказать, что Треугольники и его элементы. Если точка Треугольники и его элементысовпадает с точкой Треугольники и его элементы(а это возможно, так как Треугольники и его элементы— произвольная точка прямой а), то Треугольники и его элементы. Если точки Треугольники и его элементыи Треугольники и его элементыне совпадают, то рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы(рис. 130).

В этих треугольниках Треугольники и его элементы, так как Треугольники и его элементы— середина отрезка Треугольники и его элементы. Сторона Треугольники и его элементы— общая, Треугольники и его элементы. Следовательно, Треугольники и его элементыпо первому признаку равенства треугольников. Значит, отрезки Треугольники и его элементыи Треугольники и его элементыравны как соответственные стороны равных треугольников.

Теорема 8.3 (второй признак равенства треугольников: по стороне и двум прилежащим к ней углам). Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Треугольники и его элементы

Доказательство: Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы, у которых Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы, (рис. 131). Докажем, что Треугольники и его элементыТреугольники и его элементы.

Наложим Треугольники и его элементына Треугольники и его элементытак, чтобы точка Треугольники и его элементысовместилась с точкой Треугольники и его элементы, отрезок Треугольники и его элементы— с отрезком Треугольники и его элементы(это возможно, так как Треугольники и его элементы) и точки Треугольники и его элементыи Треугольники и его элементылежали в одной полуплоскости относительно прямой Треугольники и его элементы. Поскольку Треугольники и его элементыи Треугольники и его элементыто луч Треугольники и его элементысовместится с лучом Треугольники и его элементы, а луч Треугольники и его элементы— с лучом Треугольники и его элементы. Тогда точка Треугольники и его элементы— общая точка лучей Треугольники и его элементыи Треугольники и его элементы— совместится с точкой Треугольники и его элементы— общей точкой лучей Треугольники и его элементыи Треугольники и его элементы. Значит, Треугольники и его элементыи Треугольники и его элементы, полностью совместятся, следовательно, они равны.

Треугольники и его элементы

Пример №27

На рисунке 132 точка Треугольники и его элементы— середина отрезка Треугольники и его элементы. Докажите, что Треугольники и его элементы.

Решение:

Рассмотрим Треугольники и его элементыи Треугольники и его элементы. Треугольники и его элементы, так как точка Треугольники и его элементы— середина отрезка Треугольники и его элементы. Треугольники и его элементыпо условию. Треугольники и его элементыи Треугольники и его элементыравны как вертикальные. Следовательно, Треугольники и его элементыпо / стороне и двум прилежащим углам. Рассмотрим Треугольники и его элементыи Треугольники и его элементы. Треугольники и его элементы, Треугольники и его элементы, так как Треугольники и его элементы. Треугольники и его элементы— общая сторона. Следовательно, Треугольники и его элементыпо двум сторонам и углу между ними. Тогда Треугольники и его элементы.

Равнобедренный треугольник и его свойства

Определение. Треугольник, у которого две стороны равны, называют равнобедренным.

Треугольники и его элементы

На рисунке 155 изображен равнобедренный треугольник Треугольники и его элементы, у которого Треугольники и его элементы.

Равные стороны треугольника называют боковыми сторонами, а третью сторону — основанием равнобедренного треугольника.

Вершиной равнобедренного треугольника называют общую точку его боковых сторон (точка Треугольники и его элементына рисунке 155). При этом угол Треугольники и его элементыназывают углом при вершине, а углы Треугольники и его элементыи Треугольники и его элементыуглами при основании равнобедренного треугольника.

Определение. Треугольник, у которого все стороны равны, называют равносторонним.

Треугольники и его элементы

На рисунке 156 изображен равносторонний треугольник Треугольники и его элементы. Равносторонний треугольник — частный случай равнобедренного треугольника.

Теорема 9.1. В равнобедренном треугольнике: 1) углы при основании равны; 2) биссектриса угла при вершине является медианой и высотой.

Треугольники и его элементы

Доказательство: Рассмотрим равнобедренный треугольник Треугольники и его элементы, у которого Треугольники и его элементы, отрезок Треугольники и его элементы— его биссектриса (рис. 157). Требуется доказать, что Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы.

В треугольниках Треугольники и его элементыи Треугольники и его элементысторона Треугольники и его элементы— общая, Треугольники и его элементы, так как по условию Треугольники и его элементы— биссектриса угла Треугольники и его элементы, стороны Треугольники и его элементыи Треугольники и его элементыравны как боковые стороны равнобедренного треугольника. Следовательно, Треугольники и его элементыпо первому признаку равенства треугольников.

Отсюда можно сделать такие выводы:

  1. Треугольники и его элементыи Треугольники и его элементыравны как соответственные углы в равных треугольниках;
  2. отрезки Треугольники и его элементыи Треугольники и его элементыравны как соответственные стороны равных треугольников, следовательно, Треугольники и его элементы— медиана;
  3. Треугольники и его элементы. Но Треугольники и его элементы. Отсюда следует, что Треугольники и его элементы, значит, Треугольники и его элементы— высота.

Из этой теоремы следует, что:

  1. в треугольнике против равных сторон лежат равные углы;
  2. в равнобедренном треугольнике биссектриса, высота и медиана, проведенные из его вершины, совпадают;
  3. в равностороннем треугольнике все углы равны;
  4. в равностороннем треугольнике биссектриса, высота и медиана, проведенные из одной вершины, совпадают.

Определение. Если в треугольнике все стороны имеют разную длину, то такой треугольник называют разносторонним.

Треугольники и его элементы

Пример №28

Отрезок Треугольники и его элементы— медиана равнобедренного треугольника Треугольники и его элементы, проведенная к основанию. На сторонах Треугольники и его элементыи Треугольники и его элементыотмечены соответственно точки Треугольники и его элементыи Треугольники и его элементытак, что Треугольники и его элементы. Докажите равенство треугольников Треугольники и его элементыи Треугольники и его элементы.

Решение:

Имеем:Треугольники и его элементы, Треугольники и его элементы(рис. 158). Так как Треугольники и его элементыи Треугольники и его элементы, то Треугольники и его элементы. Треугольники и его элементы, поскольку медиана равнобедренного треугольника, проведенная к основанию, является его биссектрисой. Треугольники и его элементы— общая сторона треугольников Треугольники и его элементыи Треугольники и его элементы. Следовательно, Треугольники и его элементыпо двум сторонам и углу между ними.

Признаки равнобедренного треугольника

В предыдущем пункте мы рассмотрели свойства равнобедренного треугольника. А как среди треугольников «распознавать» равнобедренные? На этот вопрос дают ответ следующие теоремы.

Теорема 10.1. Если медиана треугольника является его высотой, то этот треугольник равнобедренный.

Треугольники и его элементы

Доказательство: Рассмотрим треугольник Треугольники и его элементы, у которого отрезок Треугольники и его элементы— медиана и высота. Надо доказать, что Треугольники и его элементы(рис. 168). Из условия теоремы следует, что прямая Треугольники и его элементы— серединный перпендикуляр отрезка Треугольники и его элементы.

Тогда по свойству серединного перпендикуляра Треугольники и его элементы.

Теорема 10.2. Если биссектриса треугольника является его высотой, то этот треугольник равнобедренный.

Треугольники и его элементы

Доказательство: Рассмотрим треугольник Треугольники и его элементы, у которого отрезок Треугольники и его элементы— биссектриса и высота. Надо доказать, что Треугольники и его элементы(рис. 169). В треугольниках Треугольники и его элементыи Треугольники и его элементысторона Треугольники и его элементы— общая, Треугольники и его элементы, так как по условию Треугольники и его элементы— биссектриса угла Треугольники и его элементы, Треугольники и его элементы, так как по условию Треугольники и его элементы— высота. Следовательно, Треугольники и его элементы Треугольники и его элементыпо второму признаку равенства треугольников. Тогда стороны Треугольники и его элементыи Треугольники и его элементыравны как соответственные стороны равных треугольников.

Теорема 10.3. Если в треугольнике два угла равны, то этот треугольник равнобедренный.

Доказательство: Рассмотрим треугольник Треугольники и его элементы, у которогоТреугольники и его элементы. Надо доказать, что Треугольники и его элементы.

Проведем серединный перпендикуляр Треугольники и его элементыстороны Треугольники и его элементы. Докажем, что прямая Треугольники и его элементыпроходит через вершину Треугольники и его элементы.

Треугольники и его элементы

Предположим, что это не так. Тогда прямая Треугольники и его элементыпересекает или сторону Треугольники и его элементы(рис. 170), или сторону Треугольники и его элементы(рис. 171).

Рассмотрим первый из этих случаев. Пусть Треугольники и его элементы— точка пересечения прямой Треугольники и его элементысо стороной Треугольники и его элементы. Тогда по свойству серединного перпендикуляра (теорема 8.2) Треугольники и его элементы. Следовательно, Треугольники и его элементы— равнобедренный, а значит Треугольники и его элементы. Но по условиюТреугольники и его элементы. Тогда имеем: Треугольники и его элементы, что противоречит основному свойству величины угла (п. 3).

Аналогично получаем противоречие и для второго случая (рис. 171).

Треугольники и его элементы

Следовательно, наше предположение неверно. Прямая Треугольники и его элементыпроходит через точку Треугольники и его элементы(рис. 172), и по свойству серединного перпендикуляра Треугольники и его элементы.

Из этой теоремы следует, что в треугольнике против равных углов лежат равные стороны.

Теорема 10.4. Если медиана треугольника является его биссектрисой, то этот треугольник равнобедренный.

Треугольники и его элементы

Доказательство: Рассмотрим треугольник Треугольники и его элементы, у которого отрезок Треугольники и его элементы— медиана и биссектриса (рис. 173). Надо доказать, что Треугольники и его элементы. На луче Треугольники и его элементыотложим отрезок Треугольники и его элементы, равный отрезку Треугольники и его элементы(рис. 173). В треугольниках Треугольники и его элементыи Треугольники и его элементы, так как по условию Треугольники и его элементы— медиана, Треугольники и его элементыпо построению, Треугольники и его элементыи Треугольники и его элементыравны как вертикальные. Следовательно, Треугольники и его элементы Треугольники и его элементыпо первому признаку равенства треугольников. Тогда стороны Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементыи Треугольники и его элементыравны как соответственные элементы равных треугольников. Поскольку Треугольники и его элементы— биссектриса угла Треугольники и его элементы, то Треугольники и его элементыТреугольники и его элементы. С учетом доказанного получаем, что Треугольники и его элементыТреугольники и его элементы. Тогда по теореме 10.3 Треугольники и его элементы— равнобедренный, откуда Треугольники и его элементы. Но уже доказано, что Треугольники и его элементы. Следовательно, Треугольники и его элементы.

Треугольники и его элементы

Пример №29

В треугольнике Треугольники и его элементыпроведена биссектриса Треугольники и его элементы(рис. 174), Треугольники и его элементы,Треугольники и его элементы. Докажите, что Треугольники и его элементы.

Решение:

Так как Треугольники и его элементыи Треугольники и его элементы— смежные, то Треугольники и его элементыТреугольники и его элементы. Следовательно, в треугольнике Треугольники и его элементыТреугольники и его элементы.

Тогда Треугольники и его элементы— равнобедренный с основанием Треугольники и его элементы, и его биссектриса Треугольники и его элементы( Треугольники и его элементы— точка пересечения Треугольники и его элементыи Треугольники и его элементы) является также высотой, т. е. Треугольники и его элементы.

Третий признак равенства треугольников

Теорема 11.1 (третий признак равенства треугольников: по трем сторонам). Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.

Треугольники и его элементы

Доказательство: Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы(рис. 177), у которых Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы Треугольники и его элементы(эти равенства указывают, какие стороны треугольников соответствуют друг другу). Докажем, что Треугольники и его элементыТреугольники и его элементы.

Треугольники и его элементы

Расположим треугольники Треугольники и его элементыи Треугольники и его элементы, так, чтобы вершина Треугольники и его элементысовместилась с вершиной Треугольники и его элементывершина Треугольники и его элементы— с Треугольники и его элементыа вершины Треугольники и его элементыи Треугольники и его элементылежали в разных полуплоскостях относительно прямой Треугольники и его элементы(рис. 178). Проведем отрезок Треугольники и его элементы. Поскольку Треугольники и его элементы, то треугольник Треугольники и его элементы— равнобедренный, значит, Треугольники и его элементы. Аналогично можно доказать, что Треугольники и его элементы. Следовательно, Треугольники и его элементы. Тогда Треугольники и его элементы Треугольники и его элементыпо первому признаку равенства треугольников.

Казалось бы, доказательство завершено. Однако мы рассмотрели лишь случай, когда отрезок Треугольники и его элементыпересекает отрезок Треугольники и его элементыво внутренней точке. На самом деле отрезок Треугольники и его элементыможет проходить через один из концов отрезка Треугольники и его элементы, например, через точку Треугольники и его элементы(рис. 179), или не иметь общих точек с отрезком Треугольники и его элементы(рис. 180). В обоих этих случаях доказательства будут аналогичными приведенному. Проведите их самостоятельно.

Треугольники и его элементы

Из третьего признака равенства треугольников следует, что треугольникжесткая фигура. Действительно, если четыре рейки скрепить так, как показано на рисунке 181, а, то такая конструкция не будет жесткой (рис. 181, б, в).

Треугольники и его элементы

Если же добавить еще одну рейку, создав два треугольника (рис. 181, г), то полученная конструкция станет жесткой.

Этот факт широко используют в практике (рис. 182).

Треугольники и его элементы

Теорема 11.2. Если точка равноудалена от концов отрезка, то она принадлежит серединному перпендикуляру этого отрезка.

Треугольники и его элементы

Доказательство: Пусть точка Треугольники и его элементыравноудалена от концов отрезка Треугольники и его элементы, т. е. Треугольники и его элементы(рис. 183). Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы, где Треугольники и его элементы— середина отрезка Треугольники и его элементы. Тогда Треугольники и его элементыпо третьему признаку равенства треугольников. Отсюда Треугольники и его элементы. Но сумма этих углов равна 180°, следовательно, каждый из них равен 90°. Значит, прямая Треугольники и его элементы— серединный перпендикуляр отрезка Треугольники и его элементы.

Заметим, что мы рассмотрели случай, когда точка Треугольники и его элементыне принадлежит прямой Треугольники и его элементы. Если точка Треугольники и его элементыпринадлежит прямой Треугольники и его элементы, то она совпадает с серединой отрезка Треугольники и его элементы, а значит, принадлежит его серединному перпендикуляру.

Теоремы

Вы видите, что в учебнике появляется все больше и больше теорем. И это не удивительно: ведь геометрия в основном состоит из теорем и их доказательств. Формулировки всех теорем, которые мы доказали, состоят из двух частей. Первую часть теоремы (то, что дано) называют условием теоремы, вторую часть теоремы (то, что требуется доказать) — заключением.

Например, в теореме 8.1 (первый признак равенства треугольников) условием является то, что две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, а заключением — равенство треугольников.

Все знакомые вам теоремы можно условно разделить на теоремы-свойства и теоремы-признаки. Например, теорема 1.1 устанавливает свойство пересекающихся прямых, теорема 9.1 — свойство равнобедренного треугольника.

Теоремы-признаки перечисляют свойства, по которым можно распознать фигуру, т. е. отнести ее к тому или иному виду (классу). Так, теоремы-признаки равенства треугольников указывают требования, по которым два треугольника можно причислить к классу равных. Например, в теоремах 10.1-10.4 сформулированы свойства, по которым «распознают» равнобедренный треугольник. Теоремы, которые следуют непосредственно из аксиом или теорем, называют теоремами-следствиями или просто следствиями.

Например, теорема 7.1 (неравенство треугольника) является следствием из основного свойства длины отрезка. Свойство углов, противолежащих равным сторонам треугольника, является следствием из теоремы 9.1.

Если в теореме 8.2 о свойстве серединного перпендикуляра поменять местами условие и заключение, то получим теорему 11.2. В таких случаях теоремы называют взаимно обратными. Если какую-то из этих теорем назвать прямой, то вторую теорему будем называть обратной.

При формулировке обратной теоремы надо быть очень внимательными: не всегда можно получить истинное утверждение. Например, утверждение, обратное теореме 4.1 о сумме смежных углов, неверно. Действительно, если сумма каких-то двух углов равна 180°, то совершенно не обязательно, чтобы эти углы были смежными. В таких случаях говорят, что обратная теорема неверна. Вы знаете, что справедливость теоремы устанавливают путем логических рассуждений, т. е. доказательства.

Первая теорема этого учебника была доказана методом от противного. Название этого метода фактически отражает его суть. Мы предположили, что заключение теоремы 1.1 неверно. На основании этого предположения с помощью логических рассуждений был получен факт, который противоречил основному свойству прямой.

Методом от противного также были доказаны и другие теоремы, например теоремы 2.1, 5.1, 10.3.

Очень важно, чтобы доказательство теоремы было полным. Так, полное доказательство теоремы 11.1 (третий признак равенства треугольников) потребовало рассмотрения всех трех возможных случаев. Умение видеть все тонкости доказательства — важнейшее качество, формирующее математическую культуру. Если бы, например, при доказательстве теоремы 8.2 о свойстве серединного перпендикуляра мы не рассмотрели отдельно случай, когда точка Треугольники и его элементыявляется серединой отрезка Треугольники и его элементы, то обращение к треугольникам Треугольники и его элементыи Треугольники и его элементыбыло бы не совсем «законным». При доказательстве теоремы 10.4 (признак равнобедренного треугольника) мы использовали прием дополнительного построения: чертеж дополнили элементами, о которых не шла речь в условии теоремы. Этот метод является ключом к решению многих задач и доказательству ряда теорем. Поэтому очень важно научиться видеть «выгодное» (результативное) дополнительное построение.

А как приобрести такое «геометрическое зрение»? Вопрос непростой, и на него сложно ответить конкретными рекомендациями. Но все же мы советуем, во-первых, не быть равнодушными к геометрии, а полюбить этот красивый предмет, во-вторых, решать больше задач, чтобы развить интуицию и приобрести нужный опыт. Дерзайте!

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Параллельные прямые. Сумма углов треугольника

Как установить параллельность двух прямых? Какими свойствами обладают параллельные прямые? Чему равна сумма углов любого треугольника? Какими свойствами обладает прямоугольный треугольник? Изучив материал этого параграфа, вы получите ответы на поставленные вопросы.

Параллельные прямые

Определение. Две прямые называют параллельными, если они не пересекаются.

Треугольники и его элементы

На рисунке 192 изображены параллельные прямые Треугольники и его элементыи Треугольники и его элементы. Пишут: Треугольники и его элементы(читают: «прямые Треугольники и его элементыи Треугольники и его элементыпараллельны» или «прямая а параллельна прямой Треугольники и его элементы»). Если два отрезка лежат на параллельных прямых, то их также называют параллельными.

Треугольники и его элементы

На рисунке 193 отрезки Треугольники и его элементыи Треугольники и его элементыпараллельны. Пишут: Треугольники и его элементы.

Треугольники и его элементы

Также можно говорить о параллельности двух лучей, луча и отрезка, прямой и луча, отрезка и прямой. Например, на рисунке 194 изображены параллельные лучи.

Теорема 13.1 (признак параллельности прямых). Две прямые, перпендикулярные третьей прямой, параллельны.

Треугольники и его элементы

Доказательство: На рисунке 195 Треугольники и его элементыи Треугольники и его элементы. Надо доказать, чтоТреугольники и его элементы.

Треугольники и его элементы

Предположим, что прямые Треугольники и его элементыи Треугольники и его элементыпересекаются в некоторой точке Треугольники и его элементы(рис. 196). Тогда через точку Треугольники и его элементы, не принадлежащую прямой Треугольники и его элементы, проходят две прямые Треугольники и его элементыи Треугольники и его элементы, перпендикулярные прямой Треугольники и его элементы. Это противоречит теореме 7.2. Следовательно, Треугольники и его элементы.

Доказанная теорема позволяет с помощью линейки и угольника строить параллельные прямые (рис. 197).

Треугольники и его элементы

Следствие. Через данную точку Треугольники и его элементы, не принадлежащую прямой Треугольники и его элементы, можно провести прямую Треугольники и его элементы, параллельную прямой Треугольники и его элементы.

Доказательство: Пусть точка Треугольники и его элементы не принадлежит прямой Треугольники и его элементы (рис. 198).

Треугольники и его элементы

Проведем (например, с помощью угольника) через точку Треугольники и его элементы прямую Треугольники и его элементы, перпендикулярную прямой Треугольники и его элементы. Теперь через точку Треугольники и его элементы проведем прямую Треугольники и его элементы, перпендикулярную прямой Треугольники и его элементы. В силу теоремы 13.1 Треугольники и его элементы.

Можно ли через точку Треугольники и его элементы(рис. 198) провести еще одну прямую, параллельную прямой Треугольники и его элементы? Ответ дает следующее

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Теорема 13.2. Если две прямые параллельны третьей прямой, то они параллельны.

Доказательство: Пусть Треугольники и его элементыиТреугольники и его элементы. Докажем, что Треугольники и его элементы.

Треугольники и его элементы

Предположим, что прямые Треугольники и его элементыи Треугольники и его элементыне параллельны, а пересекаются в некоторой точке Треугольники и его элементы(рис. 199). Получается, что через точку Треугольники и его элементыпроходят две прямые, параллельные прямой Треугольники и его элементы, что противоречит аксиоме параллельности прямых. Следовательно, Треугольники и его элементы.

Пример №30

Докажите, что если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Треугольники и его элементы

Решение:

Пусть прямые Треугольники и его элементыи Треугольники и его элементыпараллельны, прямая Треугольники и его элементыпересекает прямую Треугольники и его элементыв точке Треугольники и его элементы(рис. 200). Предположим, что прямая Треугольники и его элементыне пересекает прямую Треугольники и его элементы, тогда Треугольники и его элементы. Но в этом случае через точку Треугольники и его элементыпроходят две прямые Треугольники и его элементыи Треугольники и его элементы, параллельные прямой Треугольники и его элементы, что противоречит аксиоме параллельности прямых. Следовательно, прямая Треугольники и его элементыпересекает прямую Треугольники и его элементы.

Треугольники и его элементы

Признаки параллельности двух прямых

Если две прямые Треугольники и его элементыи Треугольники и его элементыпересечь третьей прямой Треугольники и его элементы, то образуется восемь углов (рис. 204). Прямую с называют секущей прямых Треугольники и его элементыа и Треугольники и его элементы.

Треугольники и его элементы

  • Углы 3 и 6, 4 и 5 называют односторонними.
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.
  • Углы 6и 2, 5 и 1, 3 и 7, 4 и 8 называют соответственными.

Теорема 14.1. Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Треугольники и его элементы

Доказательство: На рисунке 205 прямая Треугольники и его элементыявляется секущей прямых Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементы. Докажем, что Треугольники и его элементы.

Треугольники и его элементы

Если Треугольники и его элементы(рис. 206), то параллельность прямых Треугольники и его элементыи Треугольники и его элементыследует из теоремы 13.1.

Треугольники и его элементы

Пусть теперь прямая Треугольники и его элементыне перпендикулярна ни прямой Треугольники и его элементы, ни прямой Треугольники и его элементы. Отметим точку Треугольники и его элементы— середину отрезка Треугольники и его элементы(рис. 207). Через точку Треугольники и его элементыпроведем перпендикуляр Треугольники и его элементык прямой Треугольники и его элементы. Пусть прямая Треугольники и его элементыпересекает прямую Треугольники и его элементыв точке Треугольники и его элементы. Имеем: Треугольники и его элементыпо условию; Треугольники и его элементыи Треугольники и его элементыравны как вертикальные.

Следовательно, Треугольники и его элементыпо второму признаку равенства треугольников. Отсюда Треугольники и его элементы. Мы показали, что прямые Треугольники и его элементыи Треугольники и его элементыперпендикулярны прямой Треугольники и его элементы, значит, они параллельны.

Теорема 14.2. Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.

Треугольники и его элементы

Доказательство: На рисунке 208 прямая Треугольники и его элементыявляется секущей прямых Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементы. Докажем, что Треугольники и его элементы.

Углы 1 и 3 смежные, следовательно, Треугольники и его элементы. Тогда Треугольники и его элементы. Но они накрест лежащие. Поэтому в силу теоремы 14.1 Треугольники и его элементы.

Теорема 14.3. Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Треугольники и его элементы

Доказательство: На рисунке 209 прямая Треугольники и его элементыявляется секущей прямых Треугольники и его элементыи Треугольники и его элементы, Треугольники и его элементы. Докажем, что Треугольники и его элементы.

Углы 1 и 3 равны как вертикальные. Следовательно, Треугольники и его элементы. Но они накрест лежащие. Поэтому в силу теоремы 14.1 Треугольники и его элементы. ▲

Треугольники и его элементы

Пример №31

На рисунке 210 Треугольники и его элементы, Треугольники и его элементы. Докажите, что Треугольники и его элементы.

Решение:

Рассмотрим Треугольники и его элементыи Треугольники и его элементы. Треугольники и его элементы, Треугольники и его элементы— по условию. Треугольники и его элементы— общая сторона. Значит, Треугольники и его элементыпо двум сторонам и углу между ними. Тогда Треугольники и его элементы. Кроме того, Треугольники и его элементыи Треугольники и его элементы— накрест лежащие при прямых Треугольники и его элементыи Треугольники и его элементыи секущей Треугольники и его элементы. Следовательно, Треугольники и его элементы.

Пятый постулат Евклида

В качестве аксиом выбирают очевидные утверждения. Тогда почему бы, например, теоремы 1.1-5.1 не включить в список аксиом: ведь они тоже очевидны? Ответ на этот вопрос совершенно ясен: если какое-то утверждение можно доказать с помощью аксиом, то это утверждение — теорема, а не аксиома.

С этих позиций очень поучительна история, связанная с пятым постулатом Евклида (напомним, что в рассказе «Из истории геометрии» мы сформулировали первых четыре постулата).

Треугольники и его элементы

V постулат. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны от секущей, с которой эта сумма меньше двух прямых углов (рис. 225).

Можно показать, что пятый постулат и сформулированная нами в п. 13 аксиома параллельности прямых равносильны, т. е. из постулата следует аксиома и наоборот — из аксиомы следует постулат.

Более 20 веков многие ученые пытались доказать пятый постулат (аксиому параллельности прямых), т. е. вывести его из других аксиом Евклида. Лишь в начале XIX века несколько матема- / тиков независимо друг от друга пришли ДР к выводу: утверждение, что через данную точку, не лежащую на данной, прямой, можно провести только одну прямую, парал- а + р 0 .

Доказательство: Рассмотрим произвольный треугольник Треугольники и его элементы. Требуется доказать, что Треугольники и его элементы.

Треугольники и его элементы

Через вершину Треугольники и его элементыпроведем прямую Треугольники и его элементы, параллельную прямой Треугольники и его элементы(рис. 245). Имеем: Треугольники и его элементыи Треугольники и его элементыравны как накрест лежащие при параллельных прямых Треугольники и его элементыи Треугольники и его элементыи секущей Треугольники и его элементы. Аналогично доказываем, что Треугольники и его элементы. Но углы 1, 2, 3 составляют развернутый угол с вершиной Треугольники и его элементы. Следовательно, Треугольники и его элементы.

Следствие. Среди углов треугольника хотя бы два угла острые.

Докажите эту теорему самостоятельно.

Определение. Внешним углом треугольника называют угол, смежный с углом этого треугольника.

Треугольники и его элементы

На рисунке 246 углы 1, 2, 3 являются внешними углами треугольника Треугольники и его элементы.

Теорема 16.2. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Доказательство: На рисунке 246 Треугольники и его элементы— внешний. Надо доказать, что Треугольники и его элементы.

Очевидно, что Треугольники и его элементы. Та как Треугольники и его элементыТреугольники и его элементы, то Треугольники и его элементы, отсюда Треугольники и его элементы.

Следствие. Внешний угол треугольника больше каждого из углов треугольника, не смежных с ним.

Докажите эту теорему самостоятельно.

Вы уже знаете, что в треугольнике против равных сторон лежат равные углы, и наоборот, против равных углов лежат равные стороны (п. 9, 10). Это свойство дополняет следующая

Теорема 16.3. В треугольнике против большей стороны лежит больший угол, и наоборот, против большего угла лежит большая сторона.

Треугольники и его элементы

Доказательство: Рассмотрим треугольник Треугольники и его элементы, у которого Треугольники и его элементы. Надо доказать, что Треугольники и его элементы(рис. 247).

Поскольку Треугольники и его элементы, то на стороне Треугольники и его элементынайдется такая точка Треугольники и его элементы, что Треугольники и его элементы. Получили равнобедренный треугольник Треугольники и его элементы, в котором Треугольники и его элементы.

Так как Треугольники и его элементы— внешний угол треугольника Треугольники и его элементы, то Треугольники и его элементы. Следующая «цепочка» доказывает первую часть теоремы:

Треугольники и его элементы

Рассмотрим треугольник Треугольники и его элементы, у которого Треугольники и его элементы. Надо доказать, что Треугольники и его элементы.

Треугольники и его элементы

Поскольку Треугольники и его элементы, то угол Треугольники и его элементыможно разделить на два угла Треугольники и его элементыи Треугольники и его элементытак, что Треугольники и его элементы(рис. 248). Тогда Треугольники и его элементы— равнобедренный с равными сторонами Треугольники и его элементыи Треугольники и его элементы.

Используя неравенство треугольника, получим: Треугольники и его элементы.

Пример №34

Медиана Треугольники и его элементытреугольника Треугольники и его элементыравна половине стороны Треугольники и его элементы. Докажите, что Треугольники и его элементы— прямоугольный.

Треугольники и его элементы

Решение:

По условию Треугольники и его элементы(рис. 249). Тогда в треугольнике Треугольники и его элементы. Аналогично Треугольники и его элементы, и в треугольнике Треугольники и его элементы. В Треугольники и его элементы: Треугольники и его элементы. Учитывая, что Треугольники и его элементыТреугольники и его элементы, имеем:

Треугольники и его элементы.

Следовательно, Треугольники и его элементы— прямоугольный.

Прямоугольный треугольник

На рисунке 255 изображен прямоугольный треугольник Треугольники и его элементы, у которого Треугольники и его элементы.

Сторону прямоугольного треугольника, противолежащую прямому углу, называют гипотенузой, а стороны, прилежащие к прямому углу, — катетами (рис. 255).

Треугольники и его элементы

Для доказательства равенства двух треугольников находят их равные элементы. У любых двух прямоугольных треугольников такие элементы есть всегда — это прямые углы. Поэтому для прямоугольных треугольников можно сформулировать «персональные» признаки равенства.

Теорема17.1 (признак равенства прямоугольных треугольников по гипотенузе и катету). Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Треугольники и его элементы

Доказательство: Рассмотрим треугольники Треугольники и его элементыи Треугольники и его элементы, у которых Треугольники и его элементы, Треугольники и его элементы, Треугольники и его элементы(рис. 256). Надо доказать, что Треугольники и его элементы.

Расположим треугольники Треугольники и его элементыи Треугольники и его элементытак, чтобы вершина Треугольники и его элементысовместилась Треугольники и его элементывершиной Треугольники и его элементывершина Треугольники и его элементы— с вершиной Треугольники и его элементы, а точки Треугольники и его элементыи Треугольники и его элементылежали в разных полуплоскостях относительно прямой Треугольники и его элементы(рис. 257).

Треугольники и его элементы

Имеем: Треугольники и его элементы. Значит, угол Треугольники и его элементы— развернутый, и тогда точки Треугольники и его элементылежат на одной прямой. Получили равнобедренный треугольник Треугольники и его элементыс боковыми сторонами Треугольники и его элементыи Треугольники и его элементы, и высотой Треугольники и его элементы(рис. 257). Тогда Треугольники и его элементы— медиана этого треугольника, и Треугольники и его элементы Треугольники и его элементыСледовательно, Треугольники и его элементыпо третьему признаку равенства треугольников.

При решении задач удобно пользоваться и другими признаками равенства прямоугольных треугольников, непосредственно вытекающими из признаков равенства треугольников.

Признак равенства прямоугольных треугольников по двум к а т е т а м. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Признак равенства прямоугольных треугольников по катету и прилежащему острому углу. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Очевидно, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то равны и два других острых угла. Воспользовавшись этим утверждением, список признаков равенства прямоугольных треугольников можно дополнить еще двумя признаками.

Признак равенства прямоугольных треугольников по катету и противолежащему острому углу. Если катет и противолежащий ему острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему острому углу другого, то такие треугольники равны. Признак равенства прямоугольных треугольников по гипотенузе и острому углу. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Пример №35

Докажите равенство прямоугольных треугольников по острому углу и биссектрисе, проведенной из вершины этого угла.

Треугольники и его элементы

Решение:

В треугольниках Треугольники и его элементыи Треугольники и его элементы(рис. 258) Треугольники и его элементы, Треугольники и его элементыотрезки Треугольники и его элементыи Треугольники и его элементы— биссектрисы, Треугольники и его элементы.

Так как Треугольники и его элементы

Треугольники и его элементы

то прямоугольные треугольники Треугольники и его элементыи Треугольники и его элементыравны по гипотенузе и острому углу. Тогда Треугольники и его элементыи прямоугольные треугольники Треугольники и его элементыи Треугольники и его элементыравны по катету и прилежащему острому углу.

Свойства прямоугольного треугольника

Теорема 18.1. В прямоугольном треугольнике гипотенуза больше катета.

Доказательство: Каждый из катетов лежит против острого угла, а гипотенуза лежит против прямого угла. Прямой угол больше острого угла, следовательно, в силу теоремы 16.3 гипотенуза больше любого из катетов.

Следствие. Если из одной точки, не лежащей на прямой, к этой прямой проведены перпендикуляр и наклонная, то перпендикуляр меньше наклонной.

Треугольники и его элементы

На рисунке 267 отрезок Треугольники и его элементы— перпендикуляр, отрезок Треугольники и его элементы— наклонная, Треугольники и его элементы. Часто при решении задач используют результаты следующих двух задач.

Пример №36

Катет, лежащий против угла, величина которого равна 30°, равен половине гипотенузы.

Решение:

Рассмотрим треугольник Треугольники и его элементы, в котором Треугольники и его элементы, Треугольники и его элементы. Надо доказать, что Треугольники и его элементы.

Треугольники и его элементы

На прямой Треугольники и его элементыотложим отрезок Треугольники и его элементы, равный отрезку Треугольники и его элементы(рис. 268). Тогда Треугольники и его элементыпо двум катетам. Действительно, стороны Треугольники и его элементыи Треугольники и его элементыравны по построению, Треугольники и его элементы— общая сторона этих треугольников и Треугольники и его элементы. Тогда Треугольники и его элементы. Отсюда Треугольники и его элементы. Следовательно, Треугольники и его элементыи треугольник Треугольники и его элементы— равносторонний. Значит,

Треугольники и его элементы

Пример №37

Если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Решение:

Рассмотрим треугольник Треугольники и его элементы, в котором Треугольники и его элементы, Треугольники и его элементы. Надо доказать, что Треугольники и его элементы. На прямой Треугольники и его элементыотложим отрезок Треугольники и его элементы, равный отрезку Треугольники и его элементы(рис. 268). Тогда Треугольники и его элементы. Кроме того, отрезок Треугольники и его элементыявляется медианой и высотой треугольника Треугольники и его элементы, следовательно, по признаку равнобедренного треугольника Треугольники и его элементы. Теперь ясно, что Треугольники и его элементыи треугольник Треугольники и его элементы— равносторонний. Так как отрезок Треугольники и его элементы— биссектриса треугольника Треугольники и его элементы, то Треугольники и его элементы.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Решение треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Пространственные фигуры — виды, изображения, свойства
  • Взаимное расположения прямых на плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📹 Видео

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Виды треугольниковСкачать

Виды треугольников

Математика 5 класс (Урок№28 - Треугольники.)Скачать

Математика 5 класс (Урок№28 - Треугольники.)

Треугольник и его виды. 5 классСкачать

Треугольник и его виды. 5 класс

Треугольник и его элементыСкачать

Треугольник и его элементы

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образование

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Виды треугольниковСкачать

Виды треугольников

Треугольник и его элементыСкачать

Треугольник и его элементы

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)
Поделиться или сохранить к себе: