- Диагонали выпуклого четырехугольника ABCD пересекаются в точке E, AB = AD, CA — биссектриса угла C..
- Диагональ выпуклого четырехугольника авсд пересекаются в точке е
- Четырехугольники
- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- 🔍 Видео
Видео:Геометрия Диагонали четырехугольника ABCD пересекаются в точке O Известно что угол A = углу D AO=ODСкачать
Диагонали выпуклого четырехугольника ABCD пересекаются в точке E, AB = AD, CA — биссектриса угла C..
Диагонали выпуклого четырехугольника ABCD пересекаются в точке E, AB = AD, CA — биссектриса угла C, угол BAD равен 140 градусов, угол BEA равен 110 градусов. Найти угол CDB.
Проведем окружность через тоски B, C и D. Середина дуги BD, как и точка A, лежит на биссектрисе угла C и на серединном перпендикуляре к хорде BD. Поэтому точка A совпадает с серединой дуги BD, а значит лежит на окружности. Следовательно 0 — 0 -110 0 -?(180 0 — 0 .
Видео:Геометрия Диагонали выпуклого четырехугольника ABCD перпендикулярны. Через середины сторон AB и ADСкачать
Диагональ выпуклого четырехугольника авсд пересекаются в точке е
Диагонали выпуклого четырехугольника ABCD пересекаются в точке Е. Известно, что площадь каждого из треугольников АВЕ и DCE равна 1.
а) Докажите, что ABCD — параллелограмм или трапеция.
б) Найдите ВС, если площадь всего четырехугольника не превосходит 4, а AD = 3.
а) Найдем площадь треугольника ABD:
Тогда высоты треугольников ABD и ACD, проведенные к AD, равны. Значит, BC и AD параллельны, тогда ABCD является параллелограммом или трапецией.
б) Пусть площадь треугольника BEC равна x, тогда
Тогда По условию получаем, что
Таким образом, площади треугольников BEC и AED равны. Из пункта а) получаем, что AB и CD параллельны. Следовательно, ABCD — параллелограмм и BC = AD = 3.
Критерии оценивания выполнения задания | Баллы | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б | 3 | ||||||||||||||||||||||||||||||
Получен обоснованный ответ в пункте б имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки | 2 | ||||||||||||||||||||||||||||||
Имеется верное доказательство утверждения пункта а при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. Видео:№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать Четырехугольникитеория по математике 📈 планиметрияЧетырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки. Выпуклый четырехугольникЧетырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD. Определение Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD. Видео:№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать Виды и свойства выпуклых четырехугольниковСумма углов выпуклого четырехугольника равна 360 градусов. ПрямоугольникПрямоугольник – это четырехугольник, у которого все углы прямые. На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
S=ab, где a и b соседние стороны прямоугольника. КвадратКвадрат – это прямоугольник, у которого все стороны равны. Свойства квадрата
ПараллелограммПараллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. Ромб – это параллелограмм, у которого все стороны равны. ТрапецияТрапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции. Виды трапецийТрапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла. углы А и С равны по 90 градусов Средняя линия трапецииСделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N. Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN. Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC. По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС. Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17 Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции. Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов). Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . . Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2 Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63 pазбирался: Даниил Романович | обсудить разбор | оценить Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже. Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 . Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные: с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88 pазбирался: Даниил Романович | обсудить разбор | оценить Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8 Для выполнения данного задания надо подставить все известные данные в формулу: 12,8= d 1 × 16 × 2 5 . . 2 . . В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . . Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2 Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4 pазбирался: Даниил Романович | обсудить разбор | оценить На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота. При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение. Задание №1Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Решение Для решения 1 задачи работаем с текстом и планом одновременно: при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5. Итак, получили следующее: 1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом. Заполняем нашу таблицу:
Записываем ответ: 3517 Задание №2Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом? Решение Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом). Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м». Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок. Задание №3Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах. Решение Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра. Задание №4Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах. Решение Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки). Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м Задание №5Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой? Решение Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м: 1 магазин: 232х0,25=58 кг 2 магазин: 232х0,4=92,8 кг Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке: 1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа) 2 магазин: 92,8:5=18,56; значит надо 19 банок. Вычислим стоимость краски в каждом магазине плюс доставка: 1 магазин: 10х3000+500=30500 руб. 2 магазин: 19х1900+800=36900 руб. Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей. Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить 🔍 ВидеоОГЭ без рекламы математика 11 и 12 вариант задача 25Скачать №1039. Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АССкачать №552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:Скачать Геометрия Стороны AB и CD выпуклого четырехугольника ABCD равны. Через середины диагоналей AC и BDСкачать №403. В прямоугольнике ABCD диагонали пересекаются в точке О. Найдите периметрСкачать Геометрия Диагонали выпуклого четырехугольника равны 8 см и 12 см а угол между ними 30 НайдитеСкачать Задание 3 (№27717) ЕГЭ по математике. Урок 80Скачать №748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?Скачать №402. Диагонали прямоугольника ABCD пересекаются в точке О. Докажите, что треугольникиСкачать Диагонали четырёхугольника ABCD, вписанного в окружность, взаимно перпендикулярны. Из вершин В и ССкачать 8 класс, 3 урок, ЧетырехугольникСкачать Геометрия В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8Скачать Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать Диагонали выпуклого четырёхугольника пересекаются в точке ЕГЭ Нужен онлайн репетитор геометрии массСкачать 78 Углы и диагонали четырёхугольника (146)Скачать |