в треугольнике BC = 5 см, а две другие стороны треугольника больше BC соответственно на 2 см и на 4 см
в четырёхугольнике три другие стороны больше DE соответственно на 3 см, 5 см и 6 см
сколько вершин у получившегося многоугольника?
найдите периметр получившегося многоугольника
- Ответы на вопрос
- Даны выпуклые треугольник и четырехугольник к стороне треугольника приложили четырехугольник так
- Четырехугольники
- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- 📽️ Видео
Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать
Ответы на вопрос
два угла при основании х=70 градусов каждый.
угол при вершине =х-30=40 градусов
в квадрате диагональ равна а корней из 2=4 ,т.е. а=4/корень из2=домнажаем на корень из 2/корень из 2=2 корней из двух-сторона квадрата.
sбок.п.=2пr(h+r), где r= 2 корней из2/2=корень из двух, h=стороне=2 корней из 2, подставляем в формулу получаем s=2п*корень из 2*(2 корней из2 + корень из двух)=12псм в квадрате
авс, с= 90 гр. ав = с = ? ас = b, bc = a. ам и вк — медианы. пусть вк = 15, ам = 6кор5.
из пр. тр вкс: bk^2 = bc^2 + kc^2
или: a^2 + (b^2/4) = 225, 4a^2 + b^2 = 900 (1)
аналогично из пр.тр. амс: a^2 + 4b^2 = 720 ((6кор5)^2 *4 = 720) (2)
сложим уравнения (1) и (2):
c^2 = a^2 + b^2 = 1620/5 = 324
при проведении высоты получается 2 п/у треугольника: cef и def с прямым углом f. так как угол с=30 => ed = cd/2=9/ еd — гипотенуза в п/у треугольнике def, угол d=60 => e=30 => fd= ed/2=4,5 => cf=cd-fd=13,5
Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать
Даны выпуклые треугольник и четырехугольник к стороне треугольника приложили четырехугольник так
Может ли общая часть треугольника и четырехугольника (образованная при наложении одной фигуры на другую) представлять собой
Далее возможны три случая:
1. Две другие стороны треугольника не пересекают стороны четырехугольника (рис.1). Общая фигура — шестиугольник
2. одна из сторон треугольника пересекают сторону четырехугольника (рис.2). Общая фигура — семиугольник
3. Две другие стороны треугольника пересекают стороны четырехугольника (рис.3). Общая фигура — восьмиугольник
Т. к. других вариантов нет.
Ответ: а) да; б) да; в) нет
Если ни одна из сторон треугольника не отсекает от ABCD два угла, то легко проверить, что максимальное количество углов общего многоугольника будет 7.
Критерии оценивания выполнения задания | Баллы | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Верно получены все перечисленные (см. критерий на 1 балл) результаты. | 4 | ||||||||||||||||||||||||||||||
Верно получены три из перечисленных (см. критерий на 1 балл) результатов. | 3 | ||||||||||||||||||||||||||||||
Верно получены два из перечисленных (см. критерий на 1 балл) результатов. | 2 | ||||||||||||||||||||||||||||||
Верно получен один из следующих результатов: — обоснованное решение п. б; — обоснование в п. в того, что S может принимать все целые значения (отличные от −1 и 1); Видео:8 класс, 3 урок, ЧетырехугольникСкачать Четырехугольникитеория по математике 📈 планиметрияЧетырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки. Выпуклый четырехугольникЧетырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD. Определение Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD. Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать Виды и свойства выпуклых четырехугольниковСумма углов выпуклого четырехугольника равна 360 градусов. ПрямоугольникПрямоугольник – это четырехугольник, у которого все углы прямые. На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
S=ab, где a и b соседние стороны прямоугольника. КвадратКвадрат – это прямоугольник, у которого все стороны равны. Свойства квадрата
ПараллелограммПараллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. Ромб – это параллелограмм, у которого все стороны равны. ТрапецияТрапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции. Виды трапецийТрапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла. углы А и С равны по 90 градусов Средняя линия трапецииСделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N. Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN. Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC. По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС. Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17 Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции. Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов). Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . . Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2 Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63 pазбирался: Даниил Романович | обсудить разбор | оценить Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже. Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 . Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные: с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88 pазбирался: Даниил Романович | обсудить разбор | оценить Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8 Для выполнения данного задания надо подставить все известные данные в формулу: 12,8= d 1 × 16 × 2 5 . . 2 . . В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . . Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2 Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4 pазбирался: Даниил Романович | обсудить разбор | оценить На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота. При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение. Задание №1Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Решение Для решения 1 задачи работаем с текстом и планом одновременно: при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5. Итак, получили следующее: 1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом. Заполняем нашу таблицу:
Записываем ответ: 3517 Задание №2Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом? Решение Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом). Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м». Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок. Задание №3Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах. Решение Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра. Задание №4Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах. Решение Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки). Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м Задание №5Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой? Решение Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м: 1 магазин: 232х0,25=58 кг 2 магазин: 232х0,4=92,8 кг Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке: 1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа) 2 магазин: 92,8:5=18,56; значит надо 19 банок. Вычислим стоимость краски в каждом магазине плюс доставка: 1 магазин: 10х3000+500=30500 руб. 2 магазин: 19х1900+800=36900 руб. Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей. Ответ: см. решение pазбирался: Даниил Романович | обсудить разбор | оценить 📽️ ВидеоПравильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать №194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать Урок 6. Треугольники, четырёхугольники, многоугольники. ОГЭ. Вебинар | МатематикаСкачать Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать Геометрия 8 класс (Урок№1 - Многоугольники. Четырёхугольник.)Скачать Выпуклый четырехугольникСкачать Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать Выпуклые и невыпуклые многоугольникиСкачать #58. Олимпиадная задача о четырехугольникеСкачать №363. Начертите выпуклые пятиугольник и шестиугольник. В каждом многоугольникеСкачать №371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать Выпуклый многоугольник | Геометрия 7-9 класс #40 | ИнфоурокСкачать Вписанные четырехугольники. 9 класс.Скачать Четырехугольники. Вебинар | МатематикаСкачать Миникурс по геометрии. ЧетырехугольникиСкачать |