Условие
1. Даны векторы vector и vector и угол между ними равный 120°. Построить вектор vector = 2vector-1,5vector и определить его длину, если |vector| = 3, |vector| = 4.
Решение
Откладываем векторы от одной общей точки С
vector=vector
vector=vector
∠MKD=60 градусов, как смежный углу в 120 градусов.
Δ МKD — равнобедренный с углом 60 градусов при вершине, значит и другие его углы по 60 градусов и он равносторонний.
KT- высота равностороннего треугольника со стороной 6
КТ=6*sin60 градусов=6sqrt(3)/2=3sqrt(3)
|vector|=6sqrt(3)
О т в е т. 6sqrt(3)
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Дипломная работа
Пример. Зная векторы a и b, на которых построен параллелограмм, выразить через них вектор, совпадающий с высотой параллелограмма, перпендикулярной к стороне a.
Решение. Обозначим AB=a, AC=b, CD=h, где CD ^ a, D-основание пер-
пендикуляра, опущенного из точки C на сторону a. По правилу сложения векторов имеем:
b + h = AD, h = AD — b. Поскольку AD çç a, то AD = l a.
Найдем значение l , используя ортогональность векторов
a и h: ah=0 или a( l a-b)=0, откуда l = ab /a2. Следовательно,
h = (ab /a2) a — b.
Пример. Найдите угол между векторами a = 2m+4n и b = m-n, где m и n — единичные векторы и угол между m и n равен 120о. Несобственный интеграл Математика Примеры вычисления интегралов Дифференциальные уравнения
Решение. Имеем: cos j = ab/ab, ab = (2m+4n) (m-n) = 2 m2 — 4n2 +2mn =
= 2 — 4+2cos120o = — 2 + 2(-0.5) = -3; a = ; a2 = (2m+4n) (2m+4n) =
= 4 m2 +16mn+16 n2 = 4+16(-0.5)+16=12, значит a = . b = ; b2 =
= (m-n)(m-n) = m2 -2mn+ n2 = 1-2(-0.5)+1 = 3, значит b = . Окончательно имеем: cos j = = -1/2, Þ j = 120o.
Зная векторы AB(-3,-2,6) и BC(-2,4,4),вычислите длину высоты AD треугольника ABC.
При каком значении векторы где , перпендикулярны?
Для нахождения длины вектора воспользуемся формулой: , для этого найдем проекции векторов на оси координат, так же найдем сумму векторов по правилу сложения векторов, заданных проекциями на оси координат Направление вектора определяется углами , образованными им с осями координат Косинусы этих углов (направляющие косинусы вектора) определяются по формулам Векторное произведение векторов
Матричный метод Если матрица А системы линейных уравнений невырожденная, т.е.
det A ¹ 0, то матрица А имеет обратную, и решение системы совпадает с вектором C = A — 1B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A — 1B называют матричным способом решения системы, или решением по методу обратной матрицы.
Видео:Угол между векторами. 9 класс.Скачать
Нахождение угла между векторами
Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.
Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →
Углом между векторами a → и b → называется угол между лучами О А и О В .
Полученный угол будем обозначать следующим образом: a → , b → ^
Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.
a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.
Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.
Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.
Видео:Угол между векторами | МатематикаСкачать
Нахождение угла между векторами
Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.
Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .
Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:
cos a → , b → ^ = a → , b → a → · b →
Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.
Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.
Решение
Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,
Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4
Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4
Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.
Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:
cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2
А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2
Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.
Решение
- Для решения задачи можем сразу применить формулу:
cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70
- Также можно определить угол по формуле:
cos a → , b → ^ = ( a → , b → ) a → · b → ,
но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70
Ответ: a → , b → ^ = — a r c cos 1 70
Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.
Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .
Решение
Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )
Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13
Ответ: cos A C → , B C → ^ = 3 13
Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,
b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^
и отсюда выведем формулу косинуса угла:
cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →
Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.
Хотя указанный способ имеет место быть, все же чаще применяют формулу:
📺 Видео
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
Как находить угол между векторамиСкачать
9 класс, 17 урок, Угол между векторамиСкачать
Вычитание векторов. 9 класс.Скачать
Коллинеарность векторовСкачать
Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать
Скалярное произведение векторов. 9 класс.Скачать
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать
ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Нахождение угла между векторами через координаты. 9 класс.Скачать
9 класс, 2 урок, Координаты вектораСкачать
Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать
Координаты вектора. 9 класс.Скачать
Косинус угла между векторами. Коллинеарность векторовСкачать
Векторное произведение векторов | Высшая математикаСкачать