Отношение отрезков в прямоугольном треугольнике

Узнать ещё

Знание — сила. Познавательная информация

Видео:8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольнике

Пропорциональные отрезки в прямоугольном треугольнике

Запомнить соотношения, связывающие пропорциональные отрезки в прямоугольном треугольнике, помогает цветовая ассоциация.

Высота прямоугольного треугольника, проведенная к гипотенузе, делит ее на отрезки, которые называются проекциями катетов на гипотенузу.

Свойства прямоугольного треугольника:

1. Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.

2. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Например, в треугольнике ABC AF — высота, проведенная к гипотенузе BC, BF — проекция катета AB на гипотенузу, FC — проекция катета AC на гипотенузу.

Отношение отрезков в прямоугольном треугольнике

Если выделить каждую пару — катет и его проекция на гипотенузу — одним цветом, запомнить пропорциональные отрезки в прямоугольном треугольнике можно быстро и легко.

Как бы ни был расположен на чертеже прямоугольный треугольник, цветовая ассоциация поможет найти пропорциональные отрезки и правильно составить связывающие их соотношения:

Отношение отрезков в прямоугольном треугольнике

Выделить пропорциональные отрезки цветами можно на черновике. При решении задачи, в которой прямоугольный треугольник — только один из элементов чертежа, достаточно для нахождения связи между пропорциональными отрезками на черновике изобразить отдельный фрагмент с этим треугольником.

Видео:Математика | Метрические соотношения в прямоугольном треугольникеСкачать

Математика | Метрические соотношения в прямоугольном треугольнике

Геометрия. 8 класс

Конспект
Теорема: В прямоугольном треугольнике высота, проведенная из вершины прямоуго угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

CAD
Доказательство:
А − общий угол, ∠АСВ = ∠ADC = 90°, следовательно, ∆ACD

CAD
Отрезок MN называется средним пропорциональным (или средним геометрическим) между отрезками АВ и CD, если выполняется равенство для длин отрезков
MN = √(ABCD)
Пример:
АВ = 5 см, CD = 125 см, MN = 25 см.
Является ли отрезок MN средним пропорциональным между отрезками AB и CD?
Решение:
Воспользуемся равенством MN = √(ABCD)
25 = √(5 ∙ 125)
25 = √625 – верно, следовательно, отрезок MN является средним пропорциональным между отрезками AB и CD.
Докажем утверждение: высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Дано: ∆ABC, ∠С = 90°, CDAB

CAD, поэтому AD/CD = CD/BD, следовательно, CD 2 = ADBD, откуда CD = √(ADBD).
Для прямоугольного треугольника верно еще одно утверждение: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы.
Таким образом, в прямоугольном треугольнике выполняются равенства:
CD = √(ADBD)
AC = √(ABAD) или BC = √(ABBD)

Видео:8 класс, 19 урок, Пропорциональные отрезкиСкачать

8 класс, 19 урок, Пропорциональные отрезки

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

🎬 Видео

пропорциональные отрезки в ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ 8 классСкачать

пропорциональные отрезки в ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ 8 класс

Геометрия 8 класс (Урок№19 - Пропорциональные отрезки в прямоугольном треугольнике.)Скачать

Геометрия 8 класс (Урок№19 - Пропорциональные отрезки в прямоугольном треугольнике.)

Пропорциональные отрезки в прямоугольном треугольнике. Видеоурок 14. Геометрия 8 классСкачать

Пропорциональные отрезки в прямоугольном треугольнике. Видеоурок 14. Геометрия 8 класс

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Пропорциональные отрезки в прямоугольном треугольникеСкачать

Пропорциональные отрезки в прямоугольном треугольнике

Геометрия 8 класс. Пропорциональные отрезки в прямоугольном треугольникеСкачать

Геометрия 8 класс. Пропорциональные отрезки в прямоугольном треугольнике

Пропорциональные отрезки в прям. треугольнике ✧ Запомнить за 1 мин!Скачать

Пропорциональные отрезки в прям. треугольнике ✧ Запомнить за 1 мин!

Пропорциональные отрезки в прямоугольном треугольнике | Геометрия 7-9 класс #63 | ИнфоурокСкачать

Пропорциональные отрезки в прямоугольном треугольнике  | Геометрия 7-9 класс #63 | Инфоурок

65. Пропорциональные отрезки в прямоугольном треугольникеСкачать

65. Пропорциональные отрезки в прямоугольном треугольнике

Пропорциональные отрезки в прямоугольном треугольникеСкачать

Пропорциональные отрезки в прямоугольном треугольнике

Отношение длин отрезковСкачать

Отношение длин отрезков

Метрические соотношения в прямоугольном треугольнике. 1 часть. 9 класс.Скачать

Метрические соотношения в прямоугольном треугольнике. 1 часть. 9 класс.

Геометрия.Прямоугольный треугольник. Пропорциональные отрезки в прямоугольном треугольникеСкачать

Геометрия.Прямоугольный треугольник. Пропорциональные отрезки в прямоугольном треугольнике

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Пропорциональные отрезки в прямоугольном треугольнике.Скачать

Пропорциональные отрезки в прямоугольном треугольнике.

ПРОПОРЦИОНАЛЬНЫЕ ОТРЕЗКИ #shorts #математика #егэ #огэ #профильныйегэ #геометрияСкачать

ПРОПОРЦИОНАЛЬНЫЕ ОТРЕЗКИ #shorts #математика #егэ #огэ #профильныйегэ #геометрия
Поделиться или сохранить к себе: