Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Задание 16. Четырёхугольник ABCD вписан в окружность, причём сторона CD — диаметр этой окружности. Продолжение перпендикуляра АН к диагонали BD пересекает сторону CD в точке а окружность — в точке F, причём Н — середина АЕ.

а) Докажите, что четырёхугольник BCFE — параллелограмм.

б) Найдите площадь четырёхугольника ABCD, если известно, что АВ = 5 и АН = 4.

а) Точка В лежит на окружности с диаметром CD, поэтому Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность, а т.к. Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность, то ВС || AF. Трапеция ABCF вписана в окружность, значит, она равнобедренная, CF = АВ. Высота ВН. треугольника ABE является его медианой, значит, треугольник ABE равнобедренный, поэтому BE = АВ = CF, а т.к. Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность, то CF || BE. Противоположные стороны BE и CF четырёхугольника BCFE равны и параллельны, значит, это параллелограмм.

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

б) Треугольник ADE равнобедренный, т.к. его высота DH является медианой, значит, Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность, а т.к. вписанные углы DCF и DAF опираются на одну и ту же дугу, то

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность.

Следовательно, треугольник CEF равнобедренный, EF = CF = АВ = 5.

Из прямоугольного треугольника АВН находим, что ВН = 3, значит, высота параллелограмма BCFE (даже ромба), опущенная из вершины Е на сторону ВС, равна 3.

По теореме о произведении отрезков пересекающихся хорд Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность, откуда

Видео:Математика ОГЭ Геометрия Задача 25 Вписанный четырёхугольникСкачать

Математика ОГЭ Геометрия Задача 25  Вписанный четырёхугольник

Задание 16. Математика ЕГЭ. Диагонали AC и BD четырехугольника ABCD, вписанного в окружность, пересекаются в точке Р. Найдите площадь треугольника COD

Задание. Диагонали AC и BD четырехугольника ABCD, вписанного в окружность, пересекаются в точке Р, причем BC = CD.

а) Докажите, что AB : BC = AP : PD.

б) Найдите площадь треугольника COD, где О – центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD – диаметр описанной около четырехугольника ABCD окружности, АВ = 5, а ВС = 5√2.

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Рассмотрим треугольники ∆ABC и ∆APD. Вписанные углы ∠BAC = ∠CAD, так как опираются на равные хорды (BC = CD). Вписанные углы ∠ACB = ∠ADB, так как опираются на одну и ту же дугу АВ. Следовательно, треугольники ∆ABC и ∆APD подобные треугольники. Тогда

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

б) Найдите площадь треугольника COD, где О – центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD – диаметр описанной около четырехугольника ABCD окружности, АВ = 5, а ВС = 5√2.

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Так как BD – диаметр окружности, то вписанный угол ∠BCD = 90°, следовательно, треугольник ∆BCD – прямоугольный равнобедренный треугольник. По теореме Пифагора найдем BD:

BD 2 = BC 2 + CD 2

BD 2 = (5√2) 2 + (5√2) 2 = 100

Так как BD – диаметр окружности, то вписанный угол ∠BAD = 90°, следовательно, треугольник ∆BAD – прямоугольный треугольник. В прямоугольном треугольнике ∆BAD гипотенуза BD = 10, катет АВ = 5.

По свойству прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Следовательно, угол ∠ADB = 30°, а угол ∠ABD = 60°.

Вписанные углы ∠ABD = ∠ACD, так как опираются на одну и ту же дугу АD, значит, ∠ABD = ∠ACD = ОCD = 60°.

Точка О – центр вписанной в треугольник ∆ABD окружности. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис. Тогда точка О лежит на биссектрисе АС угла ∠BAD и на биссектрисе OD угла ∠ADВ.

Так как угол ∠ADB = 30°, то угол ∠ADO = ∠ODB = 15°. Так как угол ∠BAD = 90°, то угол ∠BAO = ∠OAD = 45°.

Угол ∠СОD – внешний угол треугольника ∆AOD, следовательно, ∠СOD = ∠OAD + ∠ADO = 45° + 15° = 60°. Угол ∠СOD = 60°. Тогда треугольник ∆COD – равносторонний треугольник, в котором OC = OD = CD = 5√2.

Найдем площадь треугольника ∆COD:

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Ответ: Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанный четырехугольник в окружность. Четырехугольник ABCD вписан в окружность

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

С разделением математики на алгебру и геометрию учебный материал становится сложнее. Появляются новые фигуры и их частные случаи. Для того чтобы хорошо разобраться в материале, необходимо изучить понятия, свойства объектов и сопутствующие теоремы.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Общие понятия

Под четырехугольником подразумевается геометрическая фигура. Состоит она из 4-х точек. Причем 3 из них не располагаются на одной прямой. Имеются отрезки, последовательно соединяющие указанные точки.

Все четырехугольники, изучаемые в школьном курсе геометрии, показаны в следующей схеме. Вывод: любой объект из представленного рисунка обладает свойствами предыдущей фигуры.

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Четырехугольник может быть следующих видов:

  • Параллелограмм. Параллельность его противоположных сторон доказывается соответствующими теоремами.
  • Трапеция. Четырехугольник, у которого основания параллельны. Другие две стороны – нет.
  • Прямоугольник. Фигура, у которой все 4 угла = 90º.
  • Ромб. Фигура, у которой все стороны равны.
  • Квадрат. Совмещает в себя свойства последних двух фигур. У него все стороны равны и все углы прямые.

Основное определение данной темы – вписанный четырехугольник в окружность. Оно заключается в следующем. Это фигура, вокруг которой описана окружность. Она должна проходить через все вершины. Внутренние углы четырехугольника, вписанного в окружность, в сумме дают 360º.

Не каждый четырехугольник может быть вписан. Связано это с тем, что серединные перпендикуляры 4-х сторон могут не пересечься в одной точке. Это сделает невозможным нахождение центра окружности, описанной около 4-угольника.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Частные случаи

Из всякого правила есть исключения. Так, в данной теме также имеются частные случаи:

  • Параллелограмм, как таковой, не может быть вписан в окружность. Только его частный случай. Это прямоугольник.
  • Если все вершины ромба находятся на описывающей линии, то он является квадратом.
  • Все вершины трапеции находятся на границе окружности. В таком случае говорят о равнобедренной фигуре.

Видео:11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

Свойства вписанного четырехугольника в окружность

Перед решением простых и сложных задач по заданной теме необходимо удостовериться в своих знаниях. Без изучения учебного материала невозможно решить ни один пример.

Видео:#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

Теорема 1

Сумма противоположных углов, четырехугольника вписанного в окружность, равна 180º.

Дан вписанный четырехугольник abcd продолжения диагоналей ас и вд пересекают окружность

Дано: четырехугольник АВСД вписан в окружность. Ее центр – точка О. Нужно доказать, что 18 ноября, 2018

📸 Видео

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Задача 6 №27875 ЕГЭ по математике. Урок 116Скачать

Задача 6 №27875 ЕГЭ по математике. Урок 116

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задание 26 Вписанный четырёхугольникСкачать

Задание 26 Вписанный четырёхугольник

Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]Скачать

Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Задание 25 Вписанный четырёхугольникСкачать

Задание 25 Вписанный четырёхугольник

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если
Поделиться или сохранить к себе: