Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
рис. 1 |
- Условия коллинеарности векторов
- Примеры задач на коллинеарность векторов
- Примеры задач на коллинеарность векторов на плоскости
- Примеры задач на коллинеарность векторов в пространстве
- Как найти вектор, коллинеарный вектору
- Понятие коллинеарности векторов
- Готовые работы на аналогичную тему
- Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам
- Признаки и свойства коллинеарности векторов через их произведение
- Как найти вектор коллинеарный вектору
- Формула
- Примеры нахождения коллинеарного вектора
- Остались вопросы?
- Все еще сложно?
- 📺 Видео
Видео:Орт вектора. Нормировать вектор. Найти единичный векторСкачать
Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Видео:Коллинеарность векторовСкачать
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
ax | = | ay | . |
bx | by |
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | . |
bx | by |
3 | = | 2 | . |
9 | n |
Решим это уравнение:
n = | 2 · 9 | = 6 |
3 |
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12
Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12
Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
3 | = | 2 | = | m |
9 | n | 12 |
Из этого соотношения получим два уравнения:
3 | = | 2 |
9 | n |
3 | = | m |
9 | 12 |
Решим эти уравнения:
n = | 2 · 9 | = 6 |
3 |
m = | 3 · 12 | = 4 |
9 |
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Как найти вектор, коллинеарный вектору
Вы будете перенаправлены на Автор24
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Понятие коллинеарности векторов
Чтобы понять, что значит коллинеарные векторы, сперва надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.
Концами отрезка будем называть точки, которые его ограничивают.
Для введения определения вектора один из концов отрезка назовем его началом.
Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.
Обозначение: $overline$ — вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.
Иначе одной маленькой буквой: $overline$ (рис. 1).
Рисунок 1. Обозначение векторов. Автор24 — интернет-биржа студенческих работ
Нулевым вектором будем называть любую точку, которая принадлежит плоскости.
Далее рассмотрим, какие векторы называются коллинеарными.
Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой. Кроме того, понятие коллинеарность наблюдается в случается параллельности векторов (рис.2).
Готовые работы на аналогичную тему
Рисунок 2. Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ
Также введем определение векторного произведения, которое будет нам необходимо далее.
Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.
Чтобы найти векторное произведение, будем пользоваться формулой
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам
Главное условие коллинеарности векторов: чтобы ненулевые векторы были коллинеарны между собой, необходимо, чтобы их соответствующие координаты были пропорциональны друг другу.
Доказательство.
Необходимость: Пусть нам даны векторы $overline$ и $overline$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать следующие равенства
$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$
Так как векторы $overline$ и $overline$ коллинеарны, то они будут либо сонаправленными, либо противоположно направленными. Без ограничения общности, будем считать, что они будут сонаправлены, то есть $overline↑↑overline$. Умножим один из этих векторов на действительное, большее нуля, число $r$, так, чтобы длины векторов $roverline$ и $overline$ были равны между собой. По определению умножения векторов на число, получим, что $roverline↑↑overline$. Но тогда, по определению равенства векторов, получим, что $roverline=overline$. Из этого равенства получим, что
$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$
Достаточность: Пусть верны равенства $α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$. Докажем, что векторы $overline$ и $overline$ будут коллинеарными.
Из данных равенств следует, что $roverline=overline$.
Имеются два случая:
В этом случае, по определению умножения вектора на число, получим, что $roverline↑↓overline$.
В этом случае получим, что $roverline↑↑overline$.
Тогда, в обоих случаях получаем доказательство коллинеарности векторов $overline$ и $overline$.
Ответ: теорема доказана.
Как проверить коллинеарность векторов $(3,-1)$ и $(9,-3)$.
Доказательство.
Разложим второй вектор:
Получаем, что координаты этих векторов пропорциональны друг другу, что, по теореме 1, и доказывает наше утверждение.
Видео:Координаты вектора. 9 класс.Скачать
Признаки и свойства коллинеарности векторов через их произведение
Чтобы ненулевые векторы были коллинеарны между собой, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.
Доказательство.
Необходимость: Пусть нам даны векторы $overline$ и $overline$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать, что $overlineхoverline=overline$.
Так как векторы коллинеарны, то, по теореме 1, верны равенства
$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$
Найдем $overlineхoverline$ по формуле
Достаточность: Пусть верно равенство $overlineхoverline=overline$, докажем, что векторы $overline$ и $overline$ коллинеарны. Так как векторное произведение равняется $overline$, то его длина также равняется нулю. Следовательно, угол между $overline$ и $overline$ равняется $180^circ$ или $0^circ$. То есть, чтобы они были коллинеарны, векторы должны лежать на одной или параллельных прямых.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 19 07 2021
Видео:Нахождение координат вектора. Практическая часть. 9 класс.Скачать
Как найти вектор коллинеарный вектору
Видео:Косинус угла между векторами. Коллинеарность векторовСкачать
Формула
Видео:Векторы для начинающих. Коллинеарные векторы. Как найти длину вектора? Нулевой векторСкачать
Примеры нахождения коллинеарного вектора
Подставим координаты заданных векторов в это равенство и найдем значение $m$:
По пропорции имеем:
$$2 cdot m=(-1) cdot(-3) Rightarrow 2 cdot m=3 Rightarrow m=frac=1,5$$
А тогда значения неизвестных параметров $m$ и $n$ находим из равенств
$$frac=2 Rightarrow m=6$$ $$frac=2 Rightarrow n=frac=0,5$$
Видео:Коллинеарные векторы.Скачать
Остались вопросы?
Здесь вы найдете ответы.
Поможем выполнить
любую работу
Видео:Координаты точки и координаты вектора 1.Скачать
Все еще сложно?
Наши эксперты помогут разобраться
Не получается написать работу самому?
Доверь это кандидату наук!
Ищещь ответ на вопрос с которым нужна помощь?
📺 Видео
Координаты вектора в пространстве. 11 класс.Скачать
№776. Начертите два неколлинеарных вектора х и у и постройте векторы: a) x+2y; б) ½y + х; в) 3x+½yСкачать
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать
Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать
9 класс, 2 урок, Координаты вектораСкачать
Единичный векторСкачать