Что такое прямая параллельная противоположной стороне

Параллелограмм: свойства и признаки

Что такое прямая параллельная противоположной стороне

О чем эта статья:

Содержание
  1. Определение параллелограмма
  2. Свойства параллелограмма
  3. Признаки параллелограмма
  4. Параллельные прямые — определение и вычисление с примерами решения
  5. Определения параллельных прямых
  6. Признаки параллельности двух прямых
  7. Аксиома параллельных прямых
  8. Обратные теоремы
  9. Пример №1
  10. Параллельность прямых на плоскости
  11. Две прямые, перпендикулярные третьей
  12. Накрест лежащие, соответственные и односторонние углы
  13. Признаки параллельности прямых
  14. Пример №2
  15. Пример №3
  16. Пример №4
  17. Аксиома параллельных прямых
  18. Пример №5
  19. Пример №6
  20. Свойства параллельных прямых
  21. Пример №7
  22. Пример №8
  23. Углы с соответственно параллельными и соответственно перпендикулярными сторонами
  24. Расстояние между параллельными прямыми
  25. Пример №9
  26. Пример №10
  27. Справочный материал по параллельным прямым
  28. Перпендикулярные и параллельные прямые
  29. Треугольник. Медиана, биссектриса, высота, средняя линия.
  30. теория по математике 📈 планиметрия
  31. Виды треугольников по углам
  32. Виды треугольников по сторонам
  33. Медиана, биссектриса, высота, средняя линия треугольника
  34. Медиана
  35. Биссектриса
  36. Высота
  37. Средняя линия
  38. 📺 Видео

Видео:Геометрия Через каждую вершину треугольника ABC проведена прямая, параллельная противоположнойСкачать

Геометрия Через каждую вершину треугольника ABC проведена прямая, параллельная противоположной

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Что такое прямая параллельная противоположной стороне
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Что такое прямая параллельная противоположной стороне
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Что такое прямая параллельная противоположной стороне

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать

№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежного

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Что такое прямая параллельная противоположной стороне
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Что такое прямая параллельная противоположной стороне
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Что такое прямая параллельная противоположной стороне
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Что такое прямая параллельная противоположной стороне
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Что такое прямая параллельная противоположной стороне
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Что такое прямая параллельная противоположной стороне

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Что такое прямая параллельная противоположной стороне

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Что такое прямая параллельная противоположной стороне

Теорема доказана. Наше предположение верно.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Что такое прямая параллельная противоположной стороне

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Что такое прямая параллельная противоположной стороне

Шаг 3. Из равенства треугольников также следует:

Что такое прямая параллельная противоположной стороне

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Что такое прямая параллельная противоположной стороне

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Что такое прямая параллельная противоположной стороне

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Что такое прямая параллельная противоположной стороне

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Параллельные прямые — определение и вычисление с примерами решения

Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ Что такое прямая параллельная противоположной стороне). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF Что такое прямая параллельная противоположной стороне

Что такое прямая параллельная противоположной стороне

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Определения параллельных прямых

На рисунке 10 прямые Что такое прямая параллельная противоположной сторонеимеют общую точку М. Точка А принадлежит прямой Что такое прямая параллельная противоположной стороне, но не принадлежит прямой Что такое прямая параллельная противоположной стороне. Говорят, что прямые Что такое прямая параллельная противоположной сторонепересекаются в точке М.
Что такое прямая параллельная противоположной стороне

Это можно записать так: Что такое прямая параллельная противоположной стороне— знак принадлежности точки прямой, «Что такое прямая параллельная противоположной стороне» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые Что такое прямая параллельная противоположной сторонепараллельны (рис. 11, с. 11), то пишут Что такое прямая параллельная противоположной стороне

Что такое прямая параллельная противоположной стороне

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые Что такое прямая параллельная противоположной сторонеперпендикулярны (рис. 12), то пишут Что такое прямая параллельная противоположной стороне

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

  1. углы 3 и 5, 4 и 6 называются внутренними накрест лежащими;
  2. углы 4 и 5, 3 и 6 называются внутренними односторонними;
  3. углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными.

Что такое прямая параллельная противоположной стороне

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

  1. Пусть при пересечении прямых а и b секущей АВ внутренние накрест лежащие углы 1 и 2 равны (рис. 86, б). Докажем, что аЧто такое прямая параллельная противоположной сторонеb.
  2. Если Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2 = 90°, то а Что такое прямая параллельная противоположной сторонеАВ и b Что такое прямая параллельная противоположной сторонеАВ. Отсюда в силу теоремы 1 (глава 3, § 2) следует, что аЧто такое прямая параллельная противоположной сторонеb.
  3. Если Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2Что такое прямая параллельная противоположной стороне90°, то из середины О отрезка АВ проведем отрезок ОF Что такое прямая параллельная противоположной сторонеa.
  4. На прямой b отложим отрезок ВF1 = АF и проведем отрезок ОF1.
  5. Заметим, что Что такое прямая параллельная противоположной сторонеОFА = Что такое прямая параллельная противоположной сторонеОF1В по двум сторонам и углу между ними (АО = ВО, АF= BF1 и Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2). Из равенства этих треугольников следует, что Что такое прямая параллельная противоположной сторонеЗ = Что такое прямая параллельная противоположной стороне4 и Что такое прямая параллельная противоположной стороне5 = Что такое прямая параллельная противоположной стороне6.
  6. Так как Что такое прямая параллельная противоположной стороне3 = Что такое прямая параллельная противоположной стороне4, а точки А, В и О лежат на одной прямой, то точки F1, F и О также лежат на одной прямой.
  7. Из равенства Что такое прямая параллельная противоположной стороне5 = Что такое прямая параллельная противоположной стороне6 следует, что Что такое прямая параллельная противоположной стороне6 = 90°. Получаем, что а Что такое прямая параллельная противоположной сторонеFF1 и b Что такое прямая параллельная противоположной сторонеFF1, а аЧто такое прямая параллельная противоположной сторонеb.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что Что такое прямая параллельная противоположной стороне1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2. Докажем, что прямые a и b параллельны (рис. 87, а).

Что такое прямая параллельная противоположной стороне
2) Заметим, что Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной стороне3 как вертикальные углы.

3) Из равенств Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2 и Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной стороне3 следует, что Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что аЧто такое прямая параллельная противоположной сторонеb.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и Что такое прямая параллельная противоположной сторонеAOF = Что такое прямая параллельная противоположной сторонеABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

  1. Пусть при пересечении двух прямых а и b секущей с сумма градусных мер внутренних односторонних углов равна 180°, например Что такое прямая параллельная противоположной стороне1 + Что такое прямая параллельная противоположной стороне2 = 180° (рис. 87, в).
  2. Заметим, что Что такое прямая параллельная противоположной стороне3 + Что такое прямая параллельная противоположной стороне2 = 180°, так как углы 3 и 2 являются смежными.
  3. Из равенств Что такое прямая параллельная противоположной сторонеl + Что такое прямая параллельная противоположной стороне2 = 180° и Что такое прямая параллельная противоположной стороне3 + Что такое прямая параллельная противоположной стороне2 = 180° следует, что Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне3.
  4. Поскольку равны внутренние накрест лежащие углы 1 и 3, то прямые а и b параллельны.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a, затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку O Что такое прямая параллельная противоположной сторонеa проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

Что такое прямая параллельная противоположной стороне

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Пусть прямые а и b параллельны прямой с. Докажем, что аЧто такое прямая параллельная противоположной сторонеb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

Что такое прямая параллельная противоположной стороне

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной сторонеF и Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной сторонеF (рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, аЧто такое прямая параллельная противоположной сторонеb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

Что такое прямая параллельная противоположной стороне

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

Что такое прямая параллельная противоположной стороне

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и Что такое прямая параллельная противоположной стороне2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и Что такое прямая параллельная противоположной стороне2 равны, поэтому по признаку параллельности прямых следует, что AQ Что такое прямая параллельная противоположной сторонеb. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2.

Например, пусть прямая l параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда Что такое прямая параллельная противоположной стороне3 = Что такое прямая параллельная противоположной сторонеB как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

  1. Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (рис. 96, а).
  2. Так как прямые а и b параллельны, то по теореме 3 данного параграфа накрест лежащие углы 1 и 3 равны, т. е. Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне3. Кроме того, Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной стороне3, так как они вертикальные.
  3. Из равенств Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне3 и Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной стороне3 следует, что Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2.

Что такое прямая параллельная противоположной стороне

Например, пусть прямая l параллельна биссектрисе AF треугольника ABC (рис. 96, б), тогда Что такое прямая параллельная противоположной стороне4 = Что такое прямая параллельная противоположной сторонеBAF. Действительно, Что такое прямая параллельная противоположной стороне4 и Что такое прямая параллельная противоположной сторонеFAC равны как соответственные углы, a Что такое прямая параллельная противоположной сторонеFAC = Что такое прямая параллельная противоположной сторонеBAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что Что такое прямая параллельная противоположной стороне1 + Что такое прямая параллельная противоположной стороне2 = 180° (рис. 97, а).

Что такое прямая параллельная противоположной стороне

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне3.

3) Углы 2 и 3 смежные, следовательно, Что такое прямая параллельная противоположной стороне2 + Что такое прямая параллельная противоположной стороне3= 180°.

4) Из равенств Что такое прямая параллельная противоположной стороне= Что такое прямая параллельная противоположной стороне3 и Что такое прямая параллельная противоположной стороне2 + Что такое прямая параллельная противоположной стороне3 = 180° следует, что Что такое прямая параллельная противоположной стороне1 + Что такое прямая параллельная противоположной стороне2 = 180°.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда Что такое прямая параллельная противоположной сторонеBAF + Что такое прямая параллельная противоположной сторонеTFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

1) Пусть прямые а и b параллельны и сЧто такое прямая параллельная противоположной сторонеа (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

Что такое прямая параллельная противоположной стороне

Так как Что такое прямая параллельная противоположной стороне1 = 90°, то и Что такое прямая параллельная противоположной стороне2 = Что такое прямая параллельная противоположной стороне1 = 90°, а, значит, сЧто такое прямая параллельная противоположной сторонеb.

Что и требовалось доказать.

Видео:Параллельные прямые циркулемСкачать

Параллельные прямые циркулем

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонепараллельны, то есть Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне Что такое прямая параллельная противоположной стороне(рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая Что такое прямая параллельная противоположной стороне, лучи АВ и КМ.

Что такое прямая параллельная противоположной стороне

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, то Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне Что такое прямая параллельная противоположной стороне(рис. 161).

Что такое прямая параллельная противоположной стороне

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая Что такое прямая параллельная противоположной стороне(рис. 162). При помощи чертежного треугольника строят прямую Что такое прямая параллельная противоположной стороне, перпендикулярную прямой Что такое прямая параллельная противоположной стороне. Затем сдвигают треугольник вдоль прямой Что такое прямая параллельная противоположной сторонеи строят другую перпендикулярную прямую Что такое прямая параллельная противоположной стороне, затем — третью прямую Что такое прямая параллельная противоположной сторонеи т. д. Поскольку прямые Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной сторонеперпендикулярны одной прямой Что такое прямая параллельная противоположной стороне, то из указанной теоремы следует, что Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Что такое прямая параллельная противоположной стороне

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

Что такое прямая параллельная противоположной стороне

По рисунку 163 объясните процесс проведения прямой Что такое прямая параллельная противоположной стороне, параллельной прямой Что такое прямая параллельная противоположной сторонеи проходящей через точку К.

Из построения следует: так как Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, то Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне. Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонетретьей прямой Что такое прямая параллельная противоположной стороне, которая называется секущей, образуется 8 углов (рис. 164).

Что такое прямая параллельная противоположной стороне

Некоторые пары этих углов имеют специальные названия:

  • Что такое прямая параллельная противоположной стороне3 иЧто такое прямая параллельная противоположной стороне5,Что такое прямая параллельная противоположной стороне4 иЧто такое прямая параллельная противоположной стороне6 — внутренние накрест лежащие углы;
  • Что такое прямая параллельная противоположной стороне2 иЧто такое прямая параллельная противоположной стороне8,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне7 — внешние накрест лежащие углы;
  • Что такое прямая параллельная противоположной стороне2 иЧто такое прямая параллельная противоположной стороне6,Что такое прямая параллельная противоположной стороне3 иЧто такое прямая параллельная противоположной стороне7,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне5,Что такое прямая параллельная противоположной стороне4 иЧто такое прямая параллельная противоположной стороне8 — соответственные углы;
  • Что такое прямая параллельная противоположной стороне3 иЧто такое прямая параллельная противоположной стороне6,Что такое прямая параллельная противоположной стороне4 иЧто такое прямая параллельная противоположной стороне5 — внутренние односторонние углы;
  • Что такое прямая параллельная противоположной стороне2 иЧто такое прямая параллельная противоположной стороне7,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне8 — внешние односторонние углы.

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD.
Что такое прямая параллельная противоположной стороне

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне— данные прямые, АВ — секущая, Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2 (рис. 166).

Что такое прямая параллельная противоположной стороне

Доказать: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую Что такое прямая параллельная противоположной сторонеи продлим его до пересечения с прямой Что такое прямая параллельная противоположной сторонев точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, Что такое прямая параллельная противоположной стороне1 = Что такое прямая параллельная противоположной стороне2 по условию, Что такое прямая параллельная противоположной сторонеBMK =Что такое прямая параллельная противоположной сторонеAMN как вертикальные). Из равенства треугольников следует, что Что такое прямая параллельная противоположной сторонеANM =Что такое прямая параллельная противоположной сторонеBKM = 90°. Тогда прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеперпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2 (рис. 167).

Что такое прямая параллельная противоположной стороне

Доказать: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеи секущей Что такое прямая параллельная противоположной стороне. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне. Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: Что такое прямая параллельная противоположной сторонеl +Что такое прямая параллельная противоположной стороне2 = 180° (рис. 168).

Что такое прямая параллельная противоположной стороне

Доказать: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеи секущей Что такое прямая параллельная противоположной стороне. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне. Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

Что такое прямая параллельная противоположной стороне

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (Что такое прямая параллельная противоположной сторонеAOB = Что такое прямая параллельная противоположной сторонеDOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что Что такое прямая параллельная противоположной сторонеBAO=Что такое прямая параллельная противоположной сторонеCDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D, Что такое прямая параллельная противоположной сторонеBAK = 26°, Что такое прямая параллельная противоположной сторонеADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

Что такое прямая параллельная противоположной стороне

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

Что такое прямая параллельная противоположной сторонеBAC = 2 •Что такое прямая параллельная противоположной сторонеBAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку Что такое прямая параллельная противоположной сторонеADK +Что такое прямая параллельная противоположной сторонеBAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

Что такое прямая параллельная противоположной стороне

Доказательство:

Так как ВС — биссектриса угла ABD, то Что такое прямая параллельная противоположной стороне1=Что такое прямая параллельная противоположной стороне2. Так как Что такое прямая параллельная противоположной сторонеBAC равнобедренный (АВ=АС по условию), то Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне3 как углы при основании равнобедренного треугольника. Тогда Что такое прямая параллельная противоположной стороне2 =Что такое прямая параллельная противоположной стороне3. Но углы 2 и 3 являются накрест лежащими при прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеи секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, Что такое прямая параллельная противоположной стороне||Что такое прямая параллельная противоположной стороне.

Реальная геометрия

Что такое прямая параллельная противоположной стороне

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

Что такое прямая параллельная противоположной стороне

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая Что такое прямая параллельная противоположной сторонепроходит через точку М и параллельна прямой Что такое прямая параллельная противоположной стороне(рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой Что такое прямая параллельная противоположной сторонев некоторой точке, пусть и достаточно удаленной.

Что такое прямая параллельная противоположной стороне

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: Что такое прямая параллельная противоположной стороне||Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне(рис. 187).

Что такое прямая параллельная противоположной стороне

Доказать: Что такое прямая параллельная противоположной стороне||Что такое прямая параллельная противоположной стороне.

Доказательство:

Предположим, что прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонене параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне, параллельные третьей прямой Что такое прямая параллельная противоположной стороне. А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и Что такое прямая параллельная противоположной стороне||Что такое прямая параллельная противоположной стороне. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2,Что такое прямая параллельная противоположной стороне3 =Что такое прямая параллельная противоположной стороне4. Доказать, что Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне.

Что такое прямая параллельная противоположной стороне

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонепо признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне. Так как Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, то Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонепо теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне— данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

Что такое прямая параллельная противоположной стороне

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим прямую Что такое прямая параллельная противоположной стороне, которая параллельна прямой Что такое прямая параллельная противоположной сторонепо признаку параллельности прямых. Если предположить, что прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонене пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне, которые параллельны прямой Что такое прямая параллельная противоположной стороне. Это противоречит аксиоме параллельных прямых. Следовательно, прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонепересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, АВ — секущая,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне2 — внутренние накрест лежащие (рис. 195).

Что такое прямая параллельная противоположной стороне

Доказать: Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2.

Доказательство:

Предположим, чтоЧто такое прямая параллельная противоположной стороне1 Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонепо признаку параллельности прямых. Получили, что через точку В проходят две прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне, параллельные прямой Что такое прямая параллельная противоположной стороне. А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно иЧто такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне— секущая,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне2 — соответственные (рис. 196).

Что такое прямая параллельная противоположной стороне

Доказать:Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне. Углы 2 и 3 равны как вертикальные. Следовательно,Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, Что такое прямая параллельная противоположной стороне— секущая,Что такое прямая параллельная противоположной стороне1 иЧто такое прямая параллельная противоположной стороне2 — внутренние односторонние (рис. 197).

Что такое прямая параллельная противоположной стороне

Доказать:Что такое прямая параллельная противоположной сторонеl +Что такое прямая параллельная противоположной стороне2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов Что такое прямая параллельная противоположной стороне2 +Что такое прямая параллельная противоположной стороне3 = 180°. По свойству параллельных прямыхЧто такое прямая параллельная противоположной сторонеl =Что такое прямая параллельная противоположной стороне3 как накрест лежащие. Следовательно,Что такое прямая параллельная противоположной сторонеl +Что такое прямая параллельная противоположной стороне2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, т. е.Что такое прямая параллельная противоположной стороне1 = 90°. Согласно следствию Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, т. е.Что такое прямая параллельная противоположной стороне2 = 90°.

Что такое прямая параллельная противоположной стороне

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

  • а) если ссылаются на признак параллельности прямых, то требуется доказать параллельность некоторых прямых;
  • б) если ссылаются на свойство параллельных прямых, то параллельные прямые даны, и нужно воспользоваться каким-то их свойством.

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

Что такое прямая параллельная противоположной стороне

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда Что такое прямая параллельная противоположной сторонеАОВ =Что такое прямая параллельная противоположной сторонеDOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

Что такое прямая параллельная противоположной стороне

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,Что такое прямая параллельная противоположной сторонеABD =Что такое прямая параллельная противоположной сторонеCDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,Что такое прямая параллельная противоположной сторонеADB =Что такое прямая параллельная противоположной сторонеCBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонепараллельны, то пишут: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне(рис. 211).

Что такое прямая параллельная противоположной стороне

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

Что такое прямая параллельная противоположной стороне

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней.

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1) Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

Что такое прямая параллельная противоположной стороне

2) Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теоремеЧто такое прямая параллельная противоположной стороне2 =Что такое прямая параллельная противоположной стороне3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, тоЧто такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне3. Значит,Что такое прямая параллельная противоположной стороне1 =Что такое прямая параллельная противоположной стороне2.

Что такое прямая параллельная противоположной стороне

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

  1. Признаки параллельности прямых: «Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны».
  2. Свойства параллельных прямых: «Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°».
  3. На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
  4. На плоскости две прямые, параллельные третьей, параллельны между собой.
  5. Прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и другой прямой.
  6. Углы с соответственно параллельными сторонами или равны, или в сумме составляют 180°.
  7. Углы с соответственно перпендикулярными сторонами или равны, или в сумме составляют 180°.

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной сторонеи АВЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, то расстояние между прямыми Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеравно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой Что такое прямая параллельная противоположной стороне. Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

Что такое прямая параллельная противоположной стороне

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне, А Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, С Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, АВЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне, CDЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне.

Доказать: АВ = CD (рис. 285).

Что такое прямая параллельная противоположной стороне

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеи секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (Что такое прямая параллельная противоположной сторонеCAD =Что такое прямая параллельная противоположной сторонеBDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой Что такое прямая параллельная противоположной сторонеравны (см. рис. 285). Прямая Что такое прямая параллельная противоположной стороне, проходящая через точку А параллельно прямой Что такое прямая параллельная противоположной стороне, будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой Что такое прямая параллельная противоположной стороне, которая параллельна прямой Что такое прямая параллельная противоположной стороне. Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой Что такое прямая параллельная противоположной сторонебудет перпендикуляром и к прямой Что такое прямая параллельная противоположной стороне(см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, Что такое прямая параллельная противоположной сторонеADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

Что такое прямая параллельная противоположной сторонеBAD +Что такое прямая параллельная противоположной сторонеADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

Что такое прямая параллельная противоположной стороне

Тогда Что такое прямая параллельная противоположной сторонеBAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =Что такое прямая параллельная противоположной сторонеАВ = 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне— данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую Что такое прямая параллельная противоположной стороне, параллельную прямой Что такое прямая параллельная противоположной стороне.

Что такое прямая параллельная противоположной стороне

Тогда Что такое прямая параллельная противоположной стороне|| Что такое прямая параллельная противоположной стороне. По теореме о расстоянии между параллельными прямыми все точки прямой Что такое прямая параллельная противоположной сторонеравноудалены от прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонена расстояние Что такое прямая параллельная противоположной сторонеАВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне, то есть расстояние от точки М до прямой Что такое прямая параллельная противоположной сторонеравно Что такое прямая параллельная противоположной сторонеАВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой Что такое прямая параллельная противоположной стороне. Но через точку К проходит единственная прямая Что такое прямая параллельная противоположной стороне, параллельная Что такое прямая параллельная противоположной стороне. Значит, точка М принадлежит прямой Что такое прямая параллельная противоположной стороне.

Таким образом, все точки прямой Что такое прямая параллельная противоположной сторонеравноудалены от прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне. И любая равноудаленная от них точка лежит на прямой Что такое прямая параллельная противоположной стороне. Прямая Что такое прямая параллельная противоположной стороне, проходящая через середину общего перпендикуляра прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне, — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

Что такое прямая параллельная противоположной стороне

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне

Запомнить:

  1. Сумма углов треугольника равна 180°.
  2. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
  3. Катет меньше гипотенузы. Перпендикуляр меньше наклонной, проведенной из той же точки к одной прямой.
  4. Прямоугольные треугольники могут быть равны: 1) по двум катетам; 2) по катету и прилежащему острому углу; 3) по катету и противолежащему острому углу; 4) по гипотенузе и острому углу; 5) по катету и гипотенузе.
  5. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Если катет равен половине гипотенузы, то он лежит против угла в 30°.
  6. В треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.
  7. В треугольнике любая сторона меньше суммы двух других его сторон (неравенство треугольника).
  8. Любая точка биссектрисы равноудалена от сторон угла. Если точка внутри угла равноудалена от сторон угла, то она лежит на биссектрисе этого угла.
  9. Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Если в треугольнике медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
  10. Биссектрисы треугольника пересекаются в одной точке (2-я замечательная точка).
  11. Расстояние от любой точки одной из параллельных прямых до другой прямой есть величина постоянная.

Справочный материал по параллельным прямым

Параллельные прямые

  • ✓ Две прямые называют параллельными, если они не пересекаются.
  • ✓ Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • ✓ Две прямые, перпендикулярные третьей прямой, параллельны.
  • ✓ Если две прямые параллельны третьей прямой, то они параллельны.
  • ✓ Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Признаки параллельности двух прямых

  • ✓ Если две прямые а и b пересечь третьей прямой с, то образуется восемь углов (рис. 246). Прямую с называют секущей прямых а и b.
  • Углы 3 и 6, 4 и 5 называют односторонними.
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.
  • Углы 6 и 2, 5 и 1, 3 и 7, 4и 8 называют соответственными.

Что такое прямая параллельная противоположной стороне

  • ✓ Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.
  • ✓ Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.
  • ✓ Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Свойства параллельных прямых

  • ✓ Если две параллельные прямые пересекаются секущей, то:
  • • углы, образующие пару накрест лежащих углов, равны;
  • • углы, образующие пару соответственных углов, равны;
  • • сумма углов, образующих пару односторонних углов, равна 180°.
  • ✓ Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне— перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной стороне— параллельны.

Что такое прямая параллельная противоположной стороне

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых Что такое прямая параллельная противоположной сторонеи Что такое прямая параллельная противоположной сторонеесли она пересекает их в двух точках (рис. 266).

Что такое прямая параллельная противоположной стороне

Пары углов 4 и 5; 3 и 6 называют внутренними односторонними; пары углов 4 и 6; 3 и 5внутренними накрест лежащими; пары углов 1 и 5; 2 и 6; 3 и 7; 4 и 8соответственными углами.

Признаки параллельности прямых:

  1. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  4. Две прямые, перпендикулярные третьей, параллельны.

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника — определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямые

Треугольник. Медиана, биссектриса, высота, средняя линия.

теория по математике 📈 планиметрия

Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.

Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.

Виды треугольников по углам

Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.

ОстроугольныеТупоугольныеПрямоугольные
Остроугольным треугольником называется треугольник, у которого все три угла острые. На рисунке показан такой остроугольный треугольник АВС.Тупоугольным называется треугольник, у которого есть тупой угол. В треугольнике может быть только один тупой угол. На рисунке показан треугольник такого вида, где угол М – тупой.Прямоугольным называется треугольник, у которого есть угол, равный 90 0 (прямой угол). На рисунке угол С равен 90 0 . Такой угол в любом прямоугольном треугольнике – единственный.
Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне

Виды треугольников по сторонам

Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.

РазностороннийРавнобедренныйРавносторонний
Треугольник называется разносторонним, если у него длины всех сторон разные. На рисунке показан такого вида треугольник АВС.Треугольник называется равнобедренным, если у него две стороны равны. На рисунке показан равнобедренный треугольник АВС, у которого АВ=ВС.Треугольник называется равносторонним, если у него все стороны равны. На рисунке показан такой треугольник, у него АВ=ВС=АС.
Что такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной сторонеЧто такое прямая параллельная противоположной стороне

Видео:Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Медиана, биссектриса, высота, средняя линия треугольника

Медиана

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.

Что такое прямая параллельная противоположной стороне

По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.

Биссектриса

Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.

В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.

Что такое прямая параллельная противоположной стороне

По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.

Высота

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.

На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.

Что такое прямая параллельная противоположной стороне

По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.

Что такое прямая параллельная противоположной стороне

Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.

Что такое прямая параллельная противоположной стороне

При построении прямой АО образовалась точка пересечения этой прямой с окружностью, обозначим её буквой Е и соединим с точкой В и с точкой С. Получим вписанные углы АВЕ и АСЕ, опирающиеся на диаметр АЕ, следовательно угол АВЕ и АСЕ равны по 90 0 .

Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.

Составим отношение сторон:

A E A B . . = A B A F . . откуда по свойству пропорции АВ 2 =АЕ ∙ АF

Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.

Составим отношение сторон:

A E A D . . = A C A F . . ; откуда выразим AD= A E ∙ A F А C . . = A E ∙ A F A C . .

Теперь рассмотрим наши два полученных равенства: АВ 2 =АЕ ∙ АF и AD= A E ∙ A F A C . .

Видим, что 36 2 =АЕ ∙ АF (подставили вместо АВ значение 36), также у нас известно, что АС=54. Найдем из второго равенства AD= A E ∙ A F A C . . = 36 2 54 . . = 24

Теперь найдем CD=AC-AD=54-24=30

pазбирался: Даниил Романович | обсудить разбор | оценить

На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.

Что такое прямая параллельная противоположной стороне

Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.

pазбирался: Даниил Романович | обсудить разбор | оценить

В треугольнике АВС известно, что угол ВАС равен 84 0 , АD – биссектриса. Найдите угол ВАD. Ответ дайте в градусах.

Что такое прямая параллельная противоположной стороне

Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0

pазбирался: Даниил Романович | обсудить разбор | оценить

📺 Видео

Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точкахСкачать

Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках

7 класс, 28 урок, Аксиома параллельных прямыхСкачать

7 класс, 28 урок, Аксиома параллельных прямых

6 класс, 44 урок, Параллельные прямыеСкачать

6 класс, 44 урок, Параллельные прямые

№473. Через вершину С треугольника ABC проведена прямая m, параллельная стороне АВ. Докажите,Скачать

№473. Через вершину С треугольника ABC проведена прямая m, параллельная стороне АВ. Докажите,

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Упражнение № 1284 – ГДЗ Математика 6 класс – Мерзляк А.Г., Полонский В.Б., Якир М.С.Скачать

Упражнение № 1284 – ГДЗ Математика 6 класс – Мерзляк А.Г., Полонский В.Б., Якир М.С.

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

№384. Через середину М стороны АВ треугольника ABC проведена прямая,Скачать

№384. Через середину М стороны АВ треугольника ABC проведена прямая,

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.
Поделиться или сохранить к себе: