Четырехугольники параллелограмм 5 класс

Четырехугольники параллелограмм 5 класс

Параллелограмм — четырехугольник, у которого противолежащие стороны попарно параллельны. AB ∥ CD, BC ∥ AD.

Четырехугольники параллелограмм 5 класс

Высота параллелограмма — перпендикуляр, проведенный из любой точки одной стороны на противолежащую сторону (расстояние между противолежащими сторонами).

Четырехугольники параллелограмм 5 класс

Свойства параллелограмма:
1. Противолежащие стороны равны.
2. Противолежащие стороны параллельны.
3. Противолежащие углы равны.
4. Сумма соседних углов равна 180.
5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
6. Диагональ делит пaрaллелограмм на два равных треугольника.
7. Сумма квадратов диагоналей равна сумме квадратов его четырех сторон.
8. Диагонали параллелограмма делят его на четыре равновеликих треугольника.

Признаки параллелограмма:
— две противолежащие стороны равны и параллельны,
— противолежащие стороны попарно равны,
— диагонали пересекаются и точкой пересечения делятся пополам,
— каждая диагональ делит четырехугольник на два равных треугольника.

Четырехугольники параллелограмм 5 класс

Это конспект по геометрии в 8 классе «Свойства и признаки параллелограмма». Выберите дальнейшее действие:

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Параллелограмм: свойства и признаки

Четырехугольники параллелограмм 5 класс

О чем эта статья:

Видео:четырёхугольники.параллелограмм 5 классСкачать

четырёхугольники.параллелограмм 5 класс

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Четырехугольники параллелограмм 5 класс
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Четырехугольники параллелограмм 5 класс
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Четырехугольники параллелограмм 5 класс

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Четырехугольники параллелограмм 5 класс
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Четырехугольники параллелограмм 5 класс
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Четырехугольники параллелограмм 5 класс
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Четырехугольники параллелограмм 5 класс
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Четырехугольники параллелограмм 5 класс
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Четырехугольники параллелограмм 5 класс

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Четырехугольники параллелограмм 5 класс

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Четырехугольники параллелограмм 5 класс

Теорема доказана. Наше предположение верно.

Видео:Виды четырёхугольниковСкачать

Виды четырёхугольников

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Четырехугольники параллелограмм 5 класс

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Четырехугольники параллелограмм 5 класс

Шаг 3. Из равенства треугольников также следует:

Четырехугольники параллелограмм 5 класс

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Четырехугольники параллелограмм 5 класс

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Четырехугольники параллелограмм 5 класс

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Четырехугольники параллелограмм 5 класс

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

Параллелограмм. Свойства и признаки параллелограмма

Видео:Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Определение параллелограмма

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Четырехугольники параллелограмм 5 класс

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Свойства параллелограмма

Четырехугольники параллелограмм 5 класс

1. Противоположные стороны параллелограмма попарно равны

2. Противоположные углы параллелограмма попарно равны

Четырехугольники параллелограмм 5 класс

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

Четырехугольники параллелограмм 5 класс 5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

Четырехугольники параллелограмм 5 класс

6. Точка пересечения диагоналей является центром симметрии параллелограмма

Четырехугольники параллелограмм 5 класс

7. Диагонали Четырехугольники параллелограмм 5 класспараллелограмма и стороны
Четырехугольники параллелограмм 5 класссвязаны следующим соотношением: Четырехугольники параллелограмм 5 класс

Четырехугольники параллелограмм 5 класс

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

Видео:Четырехугольники. 5 класс.Скачать

Четырехугольники. 5 класс.

Признаки параллелограмма

Четырехугольник Четырехугольники параллелограмм 5 классявляется параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны: Четырехугольники параллелограмм 5 класс

2. Противоположные углы попарно равны: Четырехугольники параллелограмм 5 класс

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны: Четырехугольники параллелограмм 5 класс

5. Четырехугольники параллелограмм 5 класс

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:

Четырехугольники параллелограмм 5 классФормулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

💥 Видео

Площади четырехугольников: трапеция, параллелограмм, ромб. Геометрия на клеточке. ОГЭСкачать

Площади четырехугольников: трапеция, параллелограмм, ромб. Геометрия на клеточке. ОГЭ

Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Четырехугольники: параллелограмм, прямоугольник, ромб, квадрат. Свойства и признаки. Геометрия #5Скачать

Четырехугольники: параллелограмм, прямоугольник, ромб, квадрат. Свойства и признаки. Геометрия #5

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Параллелограмм. 8 класс.Скачать

Параллелограмм. 8 класс.

Задание 25 Доказать, что четырёхугольник параллелограмм Определение параллелограммаСкачать

Задание 25 Доказать, что четырёхугольник параллелограмм  Определение параллелограмма

Четырехугольники Параллелограмм Геометрия 7 9 классы Урок 16Скачать

Четырехугольники  Параллелограмм  Геометрия 7 9 классы  Урок 16

Геометрия 7-9 классы. 16. Четырехугольники. ПараллелограммСкачать

Геометрия 7-9 классы. 16. Четырехугольники. Параллелограмм

Геометрия 8. Урок 2 - Параллелограмм. Свойства и признаки.Скачать

Геометрия 8. Урок 2 - Параллелограмм. Свойства и признаки.

КАК ИЗМЕРИТЬ УГЛЫ ЧЕТЫРЕХУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК ИЗМЕРИТЬ УГЛЫ ЧЕТЫРЕХУГОЛЬНИКА ТРАНСПОРТИРОМ?  Примеры | МАТЕМАТИКА 5 класс

Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.
Поделиться или сохранить к себе: