Четырехугольник есть центр симметрии

Как доказать, что фигура – параллелограмм? Какие его признаки?

Содержание:

Параллелограммом – 4-угольник, где противоположные стороны попарно параллельные, одинаковые по длине, а диагонали в точке пересечения делятся на равные отрезки. Изучим признаки параллелограмма по двум, четырём сторонам, внутренним углам, центру симметрии.

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Что такое параллелограмм, свойства фигуры

Особенность высоты геометрической фигуры – отрезка, опущенного из любой точки многоугольника на противоположную ей сторону: отсекает от фигуры равнобедренный треугольник.

Свойства биссектрис – отрезков, делящих углы пополам:

  • биссектрисы пересекаются под углом 90°;
  • равноделящие, лежащие одна напротив другой относительно центра симметрии углов, параллельные и равные по длине.

У 4-угольника противоположные углы равны, а сумма прилегающих к одному отрезку составляет 180°.

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Как доказать, что фигура параллелограмм

Признаки

Четырехугольник есть центр симметрии

Дан 4-угольник, где AB=CD, BC=AD. Доказать, что AB∥CD, BC∥AD.

Проведём диагональ BD. В итоге получим пару одинаковых треугольников, исходя из условий задачи и общего отрезка BD.

Четырехугольник есть центр симметрии

Отсюда вытекают равенства: ∠1 = ∠4, ∠2 = ∠3 – подобные треугольники имеют одинаковые по величине углы, образованные подобными сторонами. Значит AB∥CD и BC∥AD (из свойства: если накрест расположенные углы равны, значит прямые будут параллельными).

  • Второй признак – 4-угольник с равными по длине и параллельными противоположными сторонами относится к параллелограмму.

В данном четырёхугольнике BC=AD, BC∥AD. Нужно доказать параллельность AB и CD для подтверждения, что это параллелограмм.

Исходя из условий, понимаем, что BCD и ABD – подобные треугольники. Из условия задачи: BC = AD, BD – общая для обоих, значит, ∠2 = ∠3 – следствие того, что накрест лежащие углы подобные. Из равенства 3-угольников: ∠1 = ∠4 получается, что AB параллельна CD.

Видео:Ось симметрииСкачать

Ось симметрии

Признаки параллелограмма по диагоналям с доказательством

Четырёхугольник обладает и прочими особенностями, рассмотрим одну на примере задачи: докажите признак параллелограмма по точке пересечения диагоналей.

Четырехугольник есть центр симметрии

Треугольник AOD равен BOC, потому что AD=BC – лежащие напротив стороны четырёхугольника. ∠1=∠2, ∠3=∠4 – они лежат накрест и параллельных прямых. Если треугольники подобные, значит: OC=OA, OB=OD.

Прочие способы как доказать параллелограмм

Четырехугольник есть центр симметрии

Получается, треугольник OAF равен OCE, потому что у них стороны AO = OC. Углы, расположенные у общей вершины O, также равны, ведь они вертикальные. ∠1=∠2 – следствие равности накрест лежащих при параллельных прямых углов. Как результат: OF=OE.

Если у четырёхугольника есть точка, которая обладает описанным свойством, её называют центром симметрии этой геометрической фигуры. Для рассматриваемого многоугольника центром симметрии является точка O, разделяющая диагонали на подобные отрезки.

При повороте геометрической фигуры вокруг центра симметрии на 180° она будет совмещена с предыдущим местоположением, ведь противоположные точки поменяются местами относительно оси симметрии.

Для проверки качества усвоения материала самостоятельно сформулируйте признаки параллелограмма без доказательств.

Видео:Осевая и центральная симметрия, 6 классСкачать

Осевая и центральная симметрия, 6 класс

Докажите, что если четырёхугольник имеет центр симметрии, то этот четырёхугольник — параллелограмм.

Видео:Осевая и центральная симметрия.Скачать

Осевая и центральная симметрия.

Ваш ответ

Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,652
  • разное 16,822

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Центральная симметрияСкачать

Центральная симметрия

Осевая и центральная симметрии

Если прямая Четырехугольник есть центр симметриипроходит через середину отрезка А1А2 и перпендикулярна к нему, то точки А1 и А2 называются симметричными относительно прямой Четырехугольник есть центр симметрии. Каждая точка прямой Четырехугольник есть центр симметриисимметрична самой себе.

Четырехугольник есть центр симметрии

Фигура называется симметричной относительно прямой Четырехугольник есть центр симметрии, если для каждой точки фигуры симметричная ей точка относительно прямой Четырехугольник есть центр симметрии также принадлежит этой фигуре. Прямая Четырехугольник есть центр симметрии — ось симметрии фигуры.

Пример (синим цветом обозначены оси симметрии):

Четырехугольник есть центр симметрии

Точки А1 и А2 называются симметричными относительно точки О, если Осередина отрезка А1А2. Точка О считается симметричной самой себе.

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

Пример (синим цветом обозначены центры симметрии):

Четырехугольник есть центр симметрии

Поделись с друзьями в социальных сетях:

🎥 Видео

Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Построение симметричного четырехугольника. #ShortsСкачать

Построение симметричного четырехугольника. #Shorts

Прямоугольник. Ось симметрии. 5 классСкачать

Прямоугольник. Ось симметрии. 5 класс

ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.Скачать

ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.

Осевая и центральная симметрии. 6 класс.Скачать

Осевая и центральная симметрии. 6 класс.

Центр симметрии #огэ #математика #shortsСкачать

Центр симметрии #огэ #математика #shorts

ЧетырехугольникиСкачать

Четырехугольники

Что такое центр симметрии #огэ #математика #shortsСкачать

Что такое центр симметрии #огэ #математика #shorts

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Оси симметрии прямоугольника, равнобедренного треугольника, окружностиСкачать

Оси симметрии прямоугольника, равнобедренного треугольника, окружности
Поделиться или сохранить к себе: