Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

На рисунке изображена прямоугольная трапеция ABCD, в которой ∠D = 45°, AD = 24 см, АВ = 10 см. Найдите длины векторов BD и CD.

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Ваш ответ

Видео:8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

решение вопроса

Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,713
  • разное 16,823

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45Определение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Видео:№481. Найдите площадь прямоугольной трапеции, у которой две меньшие стороны равны 6 смСкачать

№481. Найдите площадь прямоугольной трапеции, у которой две меньшие стороны равны 6 см

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45Свойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Ромб – это параллелограмм, у которого все стороны равны.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:Трапеция. 8 класс.Скачать

Трапеция. 8 класс.

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Видео:Геометрия Основания прямоугольной трапеции равны 10 см и 24 см, а один из углов 45. Найдите меньшуюСкачать

Геометрия Основания прямоугольной трапеции равны 10 см и 24 см, а один из углов 45. Найдите меньшую

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

3. Треугольники Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45и Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Отношение площадей этих треугольников есть Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

4. Треугольники Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45и Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Видео:Геометрия 8 класс (Урок№4 - Трапеция)Скачать

Геометрия 8 класс (Урок№4 - Трапеция)

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Видео:Трапеция. Решение задач.Скачать

Трапеция. Решение задач.

Вписанная окружность

Если в трапецию вписана окружность с радиусом Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45и она делит боковую сторону точкой касания на два отрезка — Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45и Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45, то Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Площадь

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45или Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45где Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45– средняя линия

Четырехугольник авсд прямоугольная трапеция отрезок см высота трапеции угол д 45

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

🎦 Видео

прямоугольная трапецияСкачать

прямоугольная трапеция

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Урок 35. Равнобедренная и прямоугольная трапеции (8 класс)Скачать

Урок 35.  Равнобедренная и прямоугольная трапеции (8 класс)

Геометрия Высота прямоугольной трапеции, проведенная из вершины тупого угла, делит большее основаниеСкачать

Геометрия Высота прямоугольной трапеции, проведенная из вершины тупого угла, делит большее основание

Геометрия Большая диагональ прямоугольной трапеции делит высоту проведенную из вершины тупого углаСкачать

Геометрия Большая диагональ прямоугольной трапеции делит высоту проведенную из вершины тупого угла

В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12.Скачать

В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12.

ТРАПЕЦИЯ . §8 геометрия 8 классСкачать

ТРАПЕЦИЯ . §8 геометрия 8 класс

Трапеция, решение задач. Вебинар | МатематикаСкачать

Трапеция, решение задач. Вебинар | Математика

№746. Основание AD прямоугольной трапеции ABCD с прямым углом A равно 12 смСкачать

№746. Основание AD прямоугольной трапеции ABCD с прямым углом A равно 12 см

Геометрия Основания прямоугольной трапеции равны 7 см и 15 см, а один из углов 60. Найдите большуюСкачать

Геометрия Основания прямоугольной трапеции равны 7 см и 15 см, а один из углов 60. Найдите большую
Поделиться или сохранить к себе: