Челночные векторы в генной инженерии

Видео:Максим Казарновский: "Генная инженерия"Скачать

Максим Казарновский: "Генная инженерия"

Челночные векторы (бинарные)

Интегрирующая плазмида pFH7 получена путем объединения 2 репликонов, один из которых берет начало от плазмиды pC194 B.subtilis, а другой от плазмиды pBR322 E.coli, что дает возможность вектору существовать стабильно реплицироваться как в клетках B.subtilis, так и E.coli. Такие векторы, способные реплицироваться в клетках-хозяевах разных биологических видов, называют челночными или бинарными. Принципы конструирования и функционирования челночных векторов одинаковы, они должны включать в себя репликоны тех генетических систем, в которых будет происходить репликаця челночного вектора.

Примерами челночных векторов являются плазмидные ДНК, способные реплицроваться в клетках высших (жив. и растений) и низших организмов. Необходимость использования челночных векторов в генной инженерии связана с тем, что наработку в препаративном количестве векторной ДНК для проведения генно-инженерных манипуляций удобно проводить в бактериальных клетках, тогда как получение биологически активных продуктов клонированных генов высших организмов во многих случаях возможно только в клетках своего или близкого вида, в которых эти гены экспрессируются в природных условиях, т.е. в своем обычном генетическом окружении.

136.Векторные системы для клонирования в клетках дрожжей:

Клонирование в дрожжах. Среди дрожжей наиболее полно и чен вид S. cerevisiae. У этого вида в гаплоидных клетках содержи 17 хромосом, в их составе идентифицировано несколько сой генов. Большинство штаммов дрожжей содержат автономно р| лицирующуюся кольцевую ДНК длиной 2 мкм. Плазмида Scp| cerevisiae содержит около 6300 пар оснований и имеет 50—г^ копий на клетку. Ее гибриды с плазмидами обычно и используют в качестве векторов. Работа с дрожжами облегчается тем, что подоб­но бактериям они могут расти в жидкой среде и давать колонии на твердой среде, а такие имеют сравнительно короткое время реге­нерации (несколько часов) вследствие малого размера генома.

Процедура выделения ДНК в клетки дрожжей довольно про­ста. Обычно целлюлозную клеточную стенку удаляют обработкой ферментами, получая так называемые сферопласты. Их инкубиру­ют с ДНК в присутствии СаС12 и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая инкуба­ция сферопластов в среде с агаром восстанавливает клеточную стенку. Селекция дрожжевых клонов, трансформированных реком- бинантными плазмидами, основана на применении в качестве клеток-хозяев определенных мутантов, не способных расти на среде, в которой отсутствует тот или иной питательный компо­нент. Векторная плазмида содержит гены, которые при попада­нии в клетку-хозяина придают ей этот недостающий признак. Трансформанты легко отбираются по их способности давать коло­нии на обедненной среде. Применяя приемы, аналогичные ис­пользовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Эти клетки по­добно В. subtilis секретируют большое количество белка во вне­клеточную среду, что используется также для секреции чужерод­ных белков, например интерферона человека.

Известны 5 типов дрожжевых векторов: YIp – не способны реплицироваться в дрожжевых клетках, но осуществляют их трансформацию путём интеграции в гомологичный участок хромосомы путём двойного кроссинговера. Сконструирован на основе плазмиды ColEI и маркера Leu2.

Вектор YEp. Состоят из плазмиды pBR322, репликатора 2-микронной плазмиды и дрожжевого селективного маркера. Для поддержания вектора в дрожжах являются сайты ori и STB 2-микронной плазмиды. Маркирован LEU2.

Вектор YRP.Имеют хромосомныерепликаторы ARS. Способен к автономной репликации. Нестабилен. Применяется когда появляется необходимость иметь умеренное число копий клонируемого гена.

Вектор YCp –кромехромосомных репликаторовсодержат центромерыдрожжевых хромосом. Проявляет стабильность при митозе и мейозе. Хотя и меньшую, чем ествественные хромосомы. В процессе мейоза вектора сегрегируют по Менделю, с образованием кольцевых мини-хромосом.

Вектор YLp – создан на базе вектора YRp путём их линеаризации и присоединения к концам теломер взятых из внехромосомной линейной рДНК ресничной инфузории. Вектор использовали для клонирования дрожжевых теломер и анализа их структуры.

Дата добавления: 2015-04-16 ; просмотров: 50 ; Нарушение авторских прав

Видео:Введение в генную инженерию (видео 1) | Генная инженерия |Молекулярная генетикаСкачать

Введение в генную инженерию (видео 1) | Генная инженерия |Молекулярная генетика

Интегрирующие и челночные (бинарные) векторы

Векторы, пригодные для клонирования ДНК в бактериях, отличающихся от E. coli, должны обладать всеми характерными чертами, которые были отмечены выше. От только что рассмотренных они отличаются главным образом тем, что содержат природные или искусственные генетические элементы, функционирующие в новых клетках-хозяевах.

Интегрирующие векторы грамположительной бактерииBacillus subtilis. B. subtilis, как и E. coli, является излюбленным объектом генной инженерии. Это связано с тем, что B. subtilis – непатогенный микроорганизм, многие штаммы которого широко используются в микробиологической промышленности для производства биологически активных соединений и пищевых веществ. В отличие от E. coli B. subtilis способна секретировать белки и пептиды, что облегчает их очистку и дальнейшее использование. Большинство векторов для клонирования ДНК в клетках B. subtilis создано на основе плазмид других видов бацилл, а также Staphylococcus aureus и бактерий рода Streptococcus.

Челночные векторы в генной инженерии

Рис. II.11. Челночный вектор pFH7 (а) и экспрессирующий вектор pPR-TGATG-1 (б)

Обозначено расположение генов и уникальных сайтов рестрикции

Основным свойством интегрирующих векторов является их способность стабильно встраиваться в геном клетки-хозяина. Это становится возможным благодаря наличию в таких векторах последовательностей нуклеотидов, гомологичных последовательностям геномной ДНК. В результате функционирования общей системы рекомбинации происходит объединение хромосомной и плазмидной ДНК интегрирующего вектора, которое приводит к стабильному включению всей векторной плазмиды в хромосому. Примером такого интегрирующего вектора служит плазмида pFH7 B. subtilis (рис. II.11,а). Векторная плазмида содержит фрагмент ДНК умеренного бактериофага SPb и после попадания в клетки B. subtilis, лизогенные по данному бактериофагу, эффективно интегрируется в профаг. Поскольку плазмида содержит ген устойчивости к хлорамфениколу cat, клетки приобретают этот признак. Индукция профага приводит к образованию фаговых частиц, трансдуцирующих такую плазмиду и ассоциированный с ней признак устойчивости к хлорамфениколу. Интеграция плазмиды SPb в бактериальную хромосому происходит по механизму гомологичной рекомбинации с участием гена recE.

Способность к интеграции в бактериальную хромосому обнаруживают и другие плазмиды, содержащие фрагменты хромосомной ДНК клеток-хозяев, что продемонстрировано, в частности, для плазмид E. coli и Streptococcus pneumoniae.

Интегрирующие векторные системы, в которых используется тот же принцип гомологичной рекомбинации, разработаны и для эукариотических клеток, включая клетки животных и растений. В конце концов, такие работы привели к развитию целого направления исследований по созданию трансгенных животных и растений, стабильно наследующих и экспрессирующих гены, искусственно введенные в их геном. О некоторых важных следствиях этого направления исследований, включая генотерапию, речь пойдет в главе 10.

Наличие феномена гомологичной рекомбинации между хромосомной ДНК клетки-хозяина и векторной ДНК, содержащей гомологичные хромосомной ДНК последовательности нуклеотидов, приходится учитывать при получении соответствующих генно-инженерных конструкций. Такая неконтролируемая рекомбинация в большинстве случаев нежелательна, так как может приводить к потере или структурным перестройкам клонированных фрагментов ДНК. Для того чтобы свести последствия этого явления к минимуму, используют специальные штаммы клеток-хозяев, в которых общая система рекомбинации не функционирует, например вследствие мутационной инактивации гена recA E. coli или recE B. subtilis.

Челночные векторы. Интегрирующая плазмида pFH7 (см. рис. II.11,а) дает возможность проиллюстрировать еще один важный принцип, широко используемый при конструировании векторных систем в генной инженерии. Эта плазмида получена путем объединения двух репликонов, один из которых берет начало от плазмиды pC194 B. subtilis, а другой – от плазмиды pBR322 E. coli, что дает возможность вектору существовать и стабильно реплицироваться как в клетках E. coli, так и B. subtilis. Такие векторы, способные реплицироваться в клетках-хозяевах разных биологических видов, называют челночными, или бинарными векторами.

Принципы конструирования и функционирования челночных векторов одинаковы, они должны включать в себя репликоны тех генетических систем, в которых будет происходить репликация челночного вектора. При этом используются области начала репликации генетических элементов, которые автономно существуют во внехромосомном состоянии в природных условиях. Так, обсуждавшийся выше интегрирующий вектор pFH7 B. subtilis обладает свойствами челночного вектора, поскольку для его конструирования использованы репликоны двух видов бактерий. Более эффектными примерами челночных векторов являются плазмидные ДНК, способные реплицироваться в клетках высших (животных и растений) и низших организмов. Необходимость использования челночных векторов в генной инженерии связана с тем, что наработку в препаративном количестве векторной ДНК для проведения генно-инженерных манипуляций удобнее проводить в бактериальных клетках, тогда как получение биологически активных продуктов клонированных генов высших организмов во многих случаях возможно только в клетках своего или близкого вида, в которых эти гены экспрессируются в природных условиях, т.е. в своем обычном генетическом окружении (подробнее см. раздел 7.6).

Видео:Клонирование ДНК и рекомбинантная ДНК (видео 4) | Генная инженерия | Молекулярная генетикаСкачать

Клонирование ДНК и рекомбинантная ДНК (видео 4) | Генная инженерия | Молекулярная генетика

Челночный вектор, шаттл-вектор, бифункциональный вектор

Челночный вектор, шаттл-вектор, бифункциональный вектор (shuttle vector, bifunctional vector, dual-purpose vector) [лат. celox — прибивать к берегу; лат. vector — везущий, несущий] — рекомбинантный вектор, содержащий участки инициации репликации как в прокариотических, так и в эукариотических клетках. Напр., некоторые Ч.в. содержат бактериальную плазмиду и фрагмент ДНК вируса SV40. Необходимость использования Ч.в. в генной инженерии (см. Генетическая (генная) инженерия) связана с тем, что наработку в препаративном количестве векторной ДНК для генно-инженерных манипуляций удобнее проводить в бактериальных клетках, тогда как получение биологически активных продуктов клонированных генов высших организмов во многих случаях возможно только в клетках своего или близкого вида, в которых эти гены экспрессируются в природных условиях, в которых синтезируемые белки подвергаются нормальной посттрансляционной модификации (см. Посттрансляционные модификации).

Интегрирующая плазмида pFH7 ( рис. II.11,а ) получена путем объединения двух репликонов , один из которых берет начало от плазмиды pC194 B. subtilis , а другой — от плазмиды pBR322 E. coli , что дает возможность вектору существовать и стабильно реплицироваться как в клетках E. coli, так и B. subtilis. Такие векторы, способные реплицироваться в клетках-хозяевах разных биологических видов, называют челночными, или бинарными векторами.

Принципы конструирования и функционирования челночных векторов одинаковы, они должны включать в себя репликоны тех генетических систем, в которых будет происходить репликация челночного вектора. При этом используются области начала репликации генетических элементов, которые автономно существуют во внехромосомном состоянии в природных условиях. Так, интегрирующий вектор pFH7 B. subtilis обладает свойствами челночного вектора, поскольку для его конструирования использованы репликоны двух видов бактерий.

Примерами челночных векторов являются плазмидные ДНК, способные реплицироваться в клетках высших (животных и растений) и низших организмов. Необходимость использования челночных векторов в генной инженерии связана с тем, что наработку в препаративном количестве векторной ДНК для проведения генно-инженерных манипуляций удобнее проводить в бактериальных клетках, тогда как получение биологически активных продуктов клонированных генов высших организмов во многих случаях возможно только в клетках своего или близкого вида, в которых эти гены экспрессируются в природных условиях, т.е. в своем обычном генетическом окружении.

📽️ Видео

Биотехнология, ее направления. Клеточная и генная инженерия | Cериал CЕЛЕКЦ EDUCATION | ВебиумСкачать

Биотехнология, ее направления. Клеточная и генная инженерия | Cериал CЕЛЕКЦ EDUCATION | Вебиум

Генная инженерияСкачать

Генная инженерия

Просто о генной инженерииСкачать

Просто о генной инженерии

Генная инженерия за 4 минутыСкачать

Генная инженерия за 4 минуты

Изменить ДНК у себя дома? | DIY-биологияСкачать

Изменить ДНК у себя дома? | DIY-биология

Как работает генетическая инженерия.Скачать

Как работает генетическая инженерия.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Возможности генной инженерии | Лекции по биологии – биолог Александр Панчин | НаучпопСкачать

Возможности генной инженерии | Лекции по биологии – биолог Александр Панчин | Научпоп

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Путин: Создание людей с заданными характеристиками может быть страшнее атомной бомбыСкачать

Путин: Создание людей с заданными характеристиками может быть страшнее атомной бомбы

Коллинеарность векторовСкачать

Коллинеарность векторов

Сергей Дмитриев. Генная инженерия.Скачать

Сергей Дмитриев. Генная инженерия.

Генетическая инженерия, ее задачи, возможности, методы, достижения, перспективыСкачать

Генетическая инженерия, ее задачи, возможности, методы, достижения, перспективы

10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы
Поделиться или сохранить к себе:
Читайте также:

  1. Бюргерс векторы,оның шамасы мен бағыты.Дислокация қозғалысы.
  2. Векторы
  3. Векторы
  4. ВЕКТОРЫ
  5. Векторы в пространстве
  6. Векторы и линейные операции над ними
  7. Векторы и операции над ними.
  8. Векторына салынған параллелепипедтің көлемін табыңыз
  9. Векторының бірлік векторын табыңыз
  10. Векторының модулін табыңыз