База и базис системы векторов

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 — 2 1 — 1 1 2 — 2 A = 3 — 2 1 2 1 2 3 — 1 — 2 = 3 · 1 · ( — 2 ) + ( — 2 ) · 2 · 3 + 1 · 2 · ( — 1 ) — 1 · 1 · 3 — ( — 2 ) · 2 · ( — 2 ) — 3 · 2 · ( — 1 ) = = — 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , — 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , — 1 , — 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 — 1 1 0 1 — 2 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 — 2 — 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , — 1 , — 2 ) a ( 2 ) = ( 0 , 2 , 1 , — 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства — e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n — некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 — x 1 ) · e ( 1 ) + ( x

2 — x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 — x 2 ) , . . . , ( x

n — x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , — 1 , 1 ) e ( 2 ) = ( 3 , 2 , — 5 ) e ( 3 ) = ( 2 , 1 , — 3 ) x = ( 6 , 2 , — 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 — 1 1 3 2 — 5 2 1 — 3

1 — 1 1 0 5 — 8 0 3 — 5

1 — 1 1 0 5 — 8 0 0 — 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 — 1 2 1 1 — 5 — 3 = — 1 ∆ x

1 = 6 3 2 2 2 1 — 7 — 5 — 3 = — 1 , x

1 ∆ = — 1 — 1 = 1 ∆ x

2 = 1 6 2 — 1 2 1 1 — 7 — 3 = — 1 , x

2 ∆ = — 1 — 1 = 1 ∆ x

3 = 1 3 6 — 1 2 2 1 — 5 — 7 = — 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) — координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Алгоритм нахождения базиса системы векторов

Для того чтобы найти базис системы векторов Av А2. А , необходимо:

1) составить соответствующую системе векторов однородную систему уравнений

База и базис системы векторов

2) привести эту систему к равносильной разрешенной системе вида

База и базис системы векторов

  • 3) записать базис системы векторов Б = (АрА2, . А ), включив в него векторы, соответствующие разрешенным неизвестным;
  • 4) записать разложения векторов по базису; коэффициентами разложения вектора А. по этому базису являются координаты соответствующего вектора

База и базис системы векторов

в разрешенной системе уравнений, т.е.

База и базис системы векторов

Система векторов, состоящая из п векторов, ранг которой равен г, может иметь несколько базисов. Число возможных базисов системы векторов определяется как число меньшее или равное числу сочетаний из п по г. База и базис системы векторов

Пример 3.3. Найти ранг и базис системы векторов

База и базис системы векторов

разложения векторов по базису, перейти к новому базису и найти число возможных базисов системы.

Решение. Составим систему уравнений A t ay + А2х2 + . + А„хп = 0, которая в координатной записи имеет вид

База и базис системы векторов

Приведение данной системы уравнений с помощью преобразований Жордана к равносильной разрешенной приведено в ниже следующей таблице.

База и базис системы векторов

Разрешенная система имеет вид

База и базис системы векторов

В базис системы векторов включаем 1-й и 2-й векторы Б: = (AVA2), которые соответствуют разрешенным неизвестным х1 и х2. Ранг системы векторов равен числу векторов, вошедших в базис, т.е. г = 2.

Запишем разложения векторов по базису. Коэффициентами разложения вектора А3 являются координаты вектора А’3 = (3, -2), т.е. коэффициенты при х3 в разрешенной системе уравнений (в последних трех строках таблицы), они образуют столбец, расположенный под х3 А3 = ЗЛ1 — 2Аг Аналогично, коэффициентами разложения вектора А4 являются координаты вектора А’4 = (4, 1) А4 = 4Ау + 1 Ат

Для нахождения нового базиса необходимо выбрать новый разрешающий элемент. Пусть этим элементом будет элемент я94 = 1.

Видео:Решение "базисной системы векторов" (2)Скачать

Решение "базисной системы векторов" (2)

Как найти базис системы векторов примеры. Как найти базис данной системы векторов

Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

или в развернутом виде База и базис системы векторов.

Будем решать эту систему методом Гаусса, не меняя местами строки и столбцы, и, кроме того, выбирая главный элемент не в верхнем левом углу, а по всей строке. Задача состоит в том, чтобы выделить диагональную часть преобразованной системы векторов .

База и базис системы векторов

База и базис системы векторов

База и базис системы векторов

База и базис системы векторов

База и базис системы векторов.

Разрешенная система векторов, равносильная исходной, имеет вид

Векторы а 1 1 , а 3 1 , а 4 1 образуют диагональную систему. Следовательно, векторы а 1 , а 3 , а 4 образуют базис системы векторов а 1 , а 2 , а 3 , а 4 , а 5 .

Разложим теперь векторы а 2 и а 5 по базису а 1 , а 3 , а 4 . Для этого сначала разложим соответствующие векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 , имея в виду, что коэффициентами разложения вектора по диагональной системе являются его координаты x i .

Векторы а 2 и а 5 разлагаются по базису а 1 , а 3 , а 4 с теми же коэффициентами, что и векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 (те коэффициенты x i ). Следовательно,

Задания. 1 .Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

2. Найти все базисы системы векторов:

В геометрии вектор понимается как направленный отрезок, причем векторы, полученные один из другого параллельным переносом, считаются равными. Все равные векторы рассматриваются как один и тот же вектор. Начало вектора можно поместить в любую точку пространства или плоскости.

Если в пространстве заданы координаты концов вектора : A (x 1 , y 1 , z 1), B (x 2 , y 2 , z 2), то

Аналогичная формула имеет место на плоскости. Это значит, что вектор можно записать в виде координатной строки. Операции над векторами, – сложение и умножение на число, над строками выполняются покомпонентно. Это дает возможность расширить понятие вектора, понимая под вектором любую строку чисел. Например, решение системы линейных уравнений, а также любой набор значений переменных системы, можно рассматривать как вектор.

Над строками одинаковой длины операция сложения выполняется по правилу

(a 1 , a 2 , … , a n ) + (b 1 , b 2 , … , b n ) = (a 1 + b 1 , a 2 + b 2 , … , a n + b n ). (2)

Умножение строки на число выполняется по правилу

l(a 1 , a 2 , … , a n ) = (la 1 , la 2 , … , la n ). (3)

Множество векторов-строк заданной длины n с указанными операциями сложения векторов и умножения на число образует алгебраическую структуру, которая называется n-мерным линейным пространством .

Линейной комбинацией векторов называется вектор База и базис системы векторов, где λ 1 , . , λ m – произвольные коэффициенты.

Система векторов называется линейно зависимой, если существует ее линейная комбинация, равная , в которой есть хотя бы один ненулевой коэффициент.

Система векторов называется линейно независимой, если в любой ее линейной комбинации, равной , все коэффициенты нулевые.

Таким образом, решение вопроса о линейной зависимости системы векторов сводится к решению уравнения

Если у этого уравнения есть ненулевые решения, то система векторов линейно зависима. Если же нулевое решение является единственным, то система векторов линейно независима.

Для решения системы (4) можно для наглядности векторы записать не в виде строк, а в виде столбцов.

База и базис системы векторов

Тогда, выполнив преобразования в левой части, придем к системе линейных уравнений, равносильной уравнению (4). Основная матрица этой системы образована координатами исходных векторов, расположенных по столбцам. Столбец свободных членов здесь не нужен, так как система однородная.

Базисом системы векторов (конечной или бесконечной, в частности, всего линейного пространства) называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

Пример 1.5.2. Найти базис системы векторов = (1, 2, 2, 4), = (2, 3, 5, 1), = (3, 4, 8, –2), = (2, 5, 0, 3) и выразить остальные векторы через базис.

Решение . Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Это матрица системы x 1 + x 2 + x 3 + x 4 =. . Приводим матрицу к ступенчатому виду:

База и базис системы векторов База и базис системы векторов

База и базис системы векторов

База и базис системы векторов

Базис данной системы векторов образуют векторы , , , которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения вектора решаем уравнение x 1 + x 2 + x 4 = . Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего , на место столбца свободных членов. Поэтому при приведении к ступенчатому виду над матрицей будут сделаны те же преобразования, что выше. Значит, можно использовать полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки столбцов: столбцы с кружками помещаем слева от вертикальной черты, а столбец, соответствующий вектору , помещаем справа от черты.

База и базис системы векторов

Замечание . Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. При этом каждая система решается независимо от остальных.

У п р а ж н е н и е 1.4. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0), = (3, 4, 2, 1), = (1, –2, –2, 1), = (3, 5, 1, 2);

б) = (2, 1, 2, 3), = (1, 2, 2, 3), = (3, –1, 2, 2), = (4, –2, 2, 2);

в) = (1, 2, 3), = (2, 4, 3), = (3, 6, 6), = (4, –2, 1); = (2, –6, –2).

В заданной системе векторов базис обычно можно выделить разными способами, но во всех базисах будет одинаковое число векторов. Число векторов в базисе линейного пространства называется размерностью пространства. Для n -мерного линейного пространства n – это размерность пространства, так как это пространство имеет стандартный базис = (1, 0, … , 0), = (0, 1, … , 0), … , = (0, 0, … , 1). Через этот базис любой вектор = (a 1 , a 2 , … , a n ) выражается следующим образом:

= (a 1 , 0, … , 0) + (0, a 2 , … , 0) + … + (0, 0, … , a n ) =

A 1 (1, 0, … , 0) + a 2 (0, 1, … , 0) + … + a n (0, 0, … ,1) = a 1 + a 2 +… + a n .

Таким образом, компоненты в строке вектора = (a 1 , a 2 , … , a n ) – это его коэффициенты в разложении через стандартный базис.

Прямые на плоскости

Задача аналитической геометрии – применение к геометрическим задачам координатного метода. Тем самым задача переводится в алгебраическую форму и решается средствами алгебры.

Когда мы разбирали понятия n -мерного вектора и вводили операции над векторами, то выяснили, что множество всех n -мерных векторов порождает линейное пространство. В этой статье мы поговорим о важнейших связанных понятиях – о размерности и базисе векторного пространства. Также рассмотрим теорему о разложении произвольного вектора по базису и связь между различными базисами n -мерного пространства. Подробно разберем решения характерных примеров.

Навигация по странице.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Понятие размерности векторного пространства и базиса.

Понятия размерности и базиса векторного пространства напрямую связаны с понятием линейно независимой системы векторов, так что рекомендуем при необходимости обращаться к статье линейная зависимость системы векторов, свойства линейной зависимости и независимости.

Размерностью векторного пространства называется число, равное максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – это упорядоченная совокупность линейно независимых векторов этого пространства, число которых равно размерности пространства.

Приведем некоторые рассуждения, основываясь на этих определениях.

Рассмотрим пространство n -мерных векторов.

Покажем, что размерность этого пространства равна n .

Возьмем систему из n единичных векторов вида

Примем эти векторы в качестве строк матрицы А . В этом случае матрица А будет единичной матрицей размерности n на n . Ранг этой матрицы равен n (при необходимости смотрите статью ). Следовательно, система векторов База и базис системы векторовлинейно независима, причем к этой системе нельзя добавить ни одного вектора, не нарушив ее линейной независимости. Так как число векторов в системе База и базис системы векторовравно n , то размерность пространства n -мерных векторов равна n , а единичные векторы База и базис системы векторовявляются базисом этого пространства .

Из последнего утверждения и определения базиса можно сделать вывод, что любая система n -мерных векторов, число векторов в которой меньше n , не является базисом .

Теперь переставим местами первый и второй вектор системы База и базис системы векторов. Легко показать, что полученная система векторов База и базис системы векторовтакже является базисом n -мерного векторного пространства. Составим матрицу, приняв ее строками векторы этой системы. Эта матрица может быть получена из единичной матрицы перестановкой местами первой и второй строк, следовательно, ее ранг будет равен n . Таким образом, система из n векторов База и базис системы векторовлинейно независима и является базисом n -мерного векторного пространства.

Если переставить местами другие векторы системы База и базис системы векторов, то получим еще один базис.

Если взять линейно независимую систему не единичных векторов, то она также является базисом n -мерного векторного пространства.

Таким образом, векторное пространство размерности n имеет столько базисов, сколько существует линейно независимых систем из n n -мерных векторов.

Если говорить о двумерном векторном пространстве (то есть, о плоскости), то ее базисом являются два любых не коллинеарных вектора. Базисом трехмерного пространства являются три любых некомпланарных вектора.

Рассмотрим несколько примеров.

Являются ли векторы базисом трехмерного векторного пространства?

Исследуем эту систему векторов на линейную зависимость. Для этого составим матрицу, строками которой будут координаты векторов, и найдем ее ранг:

База и базис системы векторов
Таким образом, векторы a , b и c линейно независимы и их количество равно размерности векторного пространства, следовательно, они являются базисом этого пространства.

Может ли система векторов быть базисом векторного пространства?

Эта система векторов линейно зависима, так как максимальное число линейно независимых трехмерных векторов равно трем. Следовательно, эта система векторов не может быть базисом трехмерного векторного пространства (хотя подсистема исходной системы векторов является базисом).

Убедитесь, что векторы
База и базис системы векторов
могут быть базисом четырехмерного векторного пространства.

Составим матрицу, приняв ее строками исходные векторы:
База и базис системы векторов
Найдем :
База и базис системы векторов
Таким образом, система векторов a, b, c, d линейно независима и их количество равно размерности векторного пространства, следовательно, a, b, c, d являются его базисом.

Исходные векторы действительно являются базисом четырехмерного пространства.

Составляют ли векторы базис векторного пространства размерности 4 ?

Даже если исходная система векторов линейно независима, количество векторов в ней недостаточно для того, чтобы быть базисом четырехмерного пространства (базис такого пространства состоит из 4 векторов).

Нет, не составляет.

Видео:Примеры Линейная зависимость векторов Базис и ранг системы векторовСкачать

Примеры  Линейная зависимость векторов  Базис и ранг системы векторов

Разложение вектора по базису векторного пространства.

Пусть произвольные векторы База и базис системы векторовявляются базисом n -мерного векторного пространства. Если к ним добавить некоторый n -мерный вектор x , то полученная система векторов будет линейно зависимой. Из свойств линейной зависимости мы знаем, что хотя бы один вектор линейно зависимой системы линейно выражается через остальные. Иными словами, хотя бы один из векторов линейно зависимой системы раскладывается по остальным векторам.

Так мы подошли к очень важной теореме.

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Пусть База и базис системы векторов— базис n -мерного векторного пространства. Добавим к этим векторам n -мерный вектор x . Тогда полученная система векторов будет линейно зависимой и вектор x может быть линейно выражен через векторы База и базис системы векторов: , где — некоторые числа. Так мы получили разложение вектора x по базису. Осталось доказать, что это разложение единственно.

Предположим, что существует еще одно разложение , где База и базис системы векторов— некоторые числа. Отнимем от левой и правой частей последнего равенства соответственно левую и правую части равенства :

Так как система базисных векторов База и базис системы векторовлинейно независима, то по определению линейной независимости системы векторов полученное равенство возможно только тогда, когда все коэффициенты равны нулю. Поэтому, , что доказывает единственность разложения вектора по базису.

Коэффициенты называются координатами вектора x в базисе База и базис системы векторов.

После знакомства с теоремой о разложении вектора по базису, мы начинаем понимать суть выражения «нам задан n -мерный вектор База и базис системы векторов». Это выражение означает, что мы рассматриваем вектор x n -мерного векторного пространства, координаты которого заданы в некотором базисе. При этом мы понимаем, что этот же вектор x в другом базисе n-мерного векторного пространства будет иметь координаты, отличные от .

Рассмотрим следующую задачу.

Пусть в некотором базисе n -мерного векторного пространства нам задана система из n линейно независимых векторов
База и базис системы векторов
и вектор База и базис системы векторов. Тогда векторы База и базис системы векторовтакже являются базисом этого векторного пространства.

Пусть нам требуется найти координаты вектора x в базисе База и базис системы векторов. Обозначим эти координаты как База и базис системы векторов.

Вектор x в базисе База и базис системы векторовимеет представление . Запишем это равенство в координатной форме:

Это равенство равносильно системе из n линейных алгебраических уравнений с n неизвестными переменными База и базис системы векторов:
База и базис системы векторов
Основная матрица этой системы имеет вид
База и базис системы векторов
Обозначим ее буквой А . Столбцы матрицы А представляют собой векторы линейно независимой системы векторов База и базис системы векторов, поэтому ранг этой матрицы равен n , следовательно, ее определитель отличен от нуля. Этот факт указывает на то, что система уравнений имеет единственное решение, которое может быть найдено любым методом, например, или .

Так будут найдены искомые координаты База и базис системы вектороввектора x в базисе База и базис системы векторов.

Разберем теорию на примерах.

В некотором базисе трехмерного векторного пространства заданы векторы
База и базис системы векторов
Убедитесь, что система векторов также является базисом этого пространства и найдите координаты вектора x в этом базисе.

Чтобы система векторов была базисом трехмерного векторного пространства нужно, чтобы она была линейно независима. Выясним это, определив ранг матрицы A , строками которой являются векторы . Ранг найдем методом Гаусса

База и базис системы векторов
следовательно, Rank(A) = 3 , что показывает линейную независимость системы векторов .

Итак, векторы являются базисом. Пусть в этом базисе вектор x имеет координаты . Тогда, как мы показали выше, связь координат этого вектора задается системой уравнений
База и базис системы векторов
Подставив в нее известные из условия значения, получим
База и базис системы векторов
Решим ее методом Крамера:
База и базис системы векторов
Таким образом, вектор x в базисе имеет координаты База и базис системы векторов.

В некотором базисе База и базис системы векторовчетырехмерного векторного пространства задана линейно независимая система векторов
База и базис системы векторов
Известно, что База и базис системы векторов. Найдите координаты вектора x в базисе База и базис системы векторов.

Так как система векторов База и базис системы векторовлинейно независима по условию, то она является базисом четырехмерного пространства. Тогда равенство База и базис системы векторовозначает, что вектор x в базисе База и базис системы векторовимеет координаты . Обозначим координаты вектора x в базисе База и базис системы векторовкак .

Система уравнений, задающая связь координат вектора x в базисах База и базис системы векторови База и базис системы векторовимеет вид
База и базис системы векторов
Подставляем в нее известные значения и находим искомые координаты :
База и базис системы векторов

База и базис системы векторов.

Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Связь между базисами.

Пусть в некотором базисе n -мерного векторного пространства заданы две линейно независимые системы векторов
База и базис системы векторов
и
База и базис системы векторов
то есть, они тоже являются базисами этого пространства.

Если База и базис системы векторов— координаты вектора в базисе База и базис системы векторов, то связь координат База и базис системы векторови База и базис системы векторовзадается системой линейных уравнений (об этом мы говорили в предыдущем пункте):
База и базис системы векторов
, которая в матричной форме может быть записана как

База и базис системы векторов

Аналогично для вектора мы можем записать

База и базис системы векторов

Предыдущие матричные равенства можно объединить в одно, которое по сути задает связь векторов двух различных базисов

База и базис системы векторов

Аналогично мы можем выразить все векторы базиса База и базис системы векторовчерез базис База и базис системы векторов:

База и базис системы векторов

Матрицу База и базис системы векторовназывают матрицей перехода от базиса База и базис системы векторовк базису База и базис системы векторов, тогда справедливо равенство
База и базис системы векторов
Умножив обе части этого равенства справа на

получим
База и базис системы векторов
Найдем матрицу перехода, при этом не будем подробно останавливаться на нахождении обратной матрицы и умножении матриц (смотрите при необходимости статьи и ):

База и базис системы векторов

Осталось выяснить связь координат вектора x в заданных базисах.

Пусть в базисе вектор x имеет координаты , тогда
База и базис системы векторов
а в базисе вектор x имеет координаты , тогда
База и базис системы векторов
Так как левые части последних двух равенств одинаковы, то мы можем приравнять правые части:
База и базис системы векторов
Если умножить обе части справа на

База и базис системы векторов
С другой стороны
База и базис системы векторов
(найдите обратную матрицу самостоятельно).
Два последних равенства дают нам искомую связь координат вектора x в базисах и .

Матрица перехода от базиса к базису имеет вид
База и базис системы векторов;
координаты вектора x в базисах и связаны соотношениями
База и базис системы векторов
или
База и базис системы векторов.

Мы рассмотрели понятия размерности и базиса векторного пространства, научились раскладывать вектор по базису и обнаружили связь между разными базисами n-мерного пространства векторов через матрицу перехода.

Лекции по алгебре и геометрии. Семестр 1.

Лекция 9. Базис векторного пространства.

Краткое содержание: система векторов, линейная комбинация системы векторов, коэффициенты линейной комбинации системы векторов, базис на прямой, плоскости и в пространстве, размерности векторных пространств на прямой, плоскости и в пространстве, разложение вектора по базису, координаты вектора относительно базиса, теорема о равенстве двух векторов, линейные операции с векторами в координатной форме записи, ортонормированная тройка векторов, правая и левая тройки векторов, ортонормированный базис, основная теорема векторной алгебры.

Глава 9. Базис векторного пространства и разложение вектора по базису.

п.1. Базис на прямой, на плоскости и в пространстве.

Определение. Любое конечное множество векторов называется системой векторов.

Определение. Выражение , где
База и базис системы векторовназывается линейной комбинацией системы векторов
База и базис системы векторов, а числа
База и базис системы векторовназываются коэффициентами этой линейной комбинации.

Пусть L, Р и S – прямая, плоскость и пространство точек соответственно и
База и базис системы векторов. Тогда
База и базис системы векторов– векторные пространства векторов как направленных отрезков на прямой L, на плоскости Р и в пространстве S соответственно.

База и базис системы векторовназывается любой ненулевой вектор
База и базис системы векторов, т.е. любой ненулевой вектор коллинеарный прямой L:
База и базис системы векторови
База и базис системы векторов.

Обозначение базиса
База и базис системы векторов:
База и базис системы векторов– базис
База и базис системы векторов.

Определение. Базисом векторного пространства
База и базис системы векторовназывается любая упорядоченная пара неколлинеарных векторов пространства
База и базис системы векторов.

База и базис системы векторов, где
База и базис системы векторов,
База и базис системы векторов– базис
База и базис системы векторов.

Определение. Базисом векторного пространства
База и базис системы векторовназывается любая упорядоченная тройка некомпланарных векторов (т.е. не лежащих в одной плоскости) пространства
База и базис системы векторов.

База и базис системы векторов– базис
База и базис системы векторов.

Замечание. Базис векторного пространства не может содержать нулевого вектора: в пространстве
База и базис системы векторовпо определению, в пространстве
База и базис системы векторовдва вектора будут коллинеарные, если хотя бы один из них нулевой, в пространстве
База и базис системы векторовтри вектора будут компланарные, т.е будут лежать в одной плоскости, если хотя бы один из трех векторов будет нулевой.

п.2. Разложение вектора по базису.

Определение. Пусть База и базис системы векторов– произвольный вектор,
База и базис системы векторов– произвольная система векторов. Если выполняется равенство

то говорят, что вектор База и базис системы векторовпредставлен в виде линейной комбинации данной системы векторов. Если данная система векторов
База и базис системы векторовявляется базисом векторного пространства, то равенство (1) называется разложением вектора База и базис системы векторовпо базису
База и базис системы векторов. Коэффициенты линейной комбинации
База и базис системы векторовназываются в этом случае координатами вектора База и базис системы векторовотносительно базиса
База и базис системы векторов.

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

Доказательство. 1) Пусть L произвольная прямая (или ось) и
База и базис системы векторов– базис
База и базис системы векторов. Возьмем произвольный вектор
База и базис системы векторов. Так как оба вектора База и базис системы векторови База и базис системы векторовколлинеарные одной и той же прямой L, то
База и базис системы векторов. Воспользуемся теоремой о коллинеарности двух векторов. Так как
База и базис системы векторов, то найдется (существует) такое число
База и базис системы векторов, что
База и базис системы векторови тем самым мы получили разложение вектора База и базис системы векторовпо базису
База и базис системы вектороввекторного пространства
База и базис системы векторов.

Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора База и базис системы векторовпо базису
База и базис системы вектороввекторного пространства
База и базис системы векторов:

База и базис системы векторови
База и базис системы векторов, где
База и базис системы векторов. Тогда
База и базис системы векторови используя закон дистрибутивности, получаем:

Так как
База и базис системы векторов, то из последнего равенства следует, что
База и базис системы векторов, ч.т.д.

2) Пусть теперь Р произвольная плоскость и
База и базис системы векторов– базис
База и базис системы векторов. Пусть
База и базис системы векторовпроизвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведем прямую База и базис системы векторов, на которой лежит вектор База и базис системы векторов, прямую
База и базис системы векторов, на которой лежит вектор База и базис системы векторов. Через конец вектора База и базис системы векторовпроведем прямую параллельную вектору База и базис системы векторови прямую параллельную вектору База и базис системы векторов. Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма
База и базис системы векторов, и
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов– базис База и базис системы векторов,
База и базис системы векторов– базис
База и базис системы векторов.

Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа
База и базис системы векторов, что

База и базис системы векторови
База и базис системы векторов. Отсюда получаем:

База и базис системы векторови возможность разложения по базису доказана.

База и базис системы векторов

Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора База и базис системы векторовпо базису
База и базис системы вектороввекторного пространства
База и базис системы векторов:
База и базис системы векторови
База и базис системы векторов. Получаем равенство

Откуда следует
База и базис системы векторов. Если
База и базис системы векторов, то
База и базис системы векторов, а т.к.
База и базис системы векторов, то
База и базис системы векторови коэффициенты разложения равны:
База и базис системы векторов,
База и базис системы векторов. Пусть теперь
База и базис системы векторов. Тогда
База и базис системы векторов, где
База и базис системы векторов. По теореме о коллинеарности двух векторов отсюда следует, что
База и базис системы векторов. Получили противоречие условию теоремы. Следовательно,
База и базис системы векторови
База и базис системы векторов, ч.т.д.

3) Пусть
База и базис системы векторов– базис
База и базис системы векторови пусть
База и базис системы векторовпроизвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора
База и базис системы векторови вектор База и базис системы векторовот одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы
База и базис системы векторов, плоскость
База и базис системы векторови плоскость
База и базис системы векторов; далее через конец вектора База и базис системы векторовпроведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

База и базис системы векторов

По правилу сложения векторов получаем равенство:

База и базис системы векторов. (1)

По построению
База и базис системы векторов. Отсюда, по теореме о коллинеарности двух векторов, следует, что существует число
База и базис системы векторов, такое что
База и базис системы векторов. Аналогично,
База и базис системы векторови
База и базис системы векторов, где
База и базис системы векторов. Теперь, подставляя эти равенства в (1), получаем:

и возможность разложения по базису доказана.

Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора База и базис системы векторовпо базису
База и базис системы векторов:

Заметим, что по условию векторы
База и базис системы векторовнекомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая:
База и базис системы векторовили
База и базис системы векторов.

а) Пусть
База и базис системы векторов, тогда из равенства (3) следует:

База и базис системы векторов. (4)

Из равенства (4) следует, что вектор База и базис системы векторовраскладывается по базису
База и базис системы векторов, т.е. вектор База и базис системы векторовлежит в плоскости векторов
База и базис системы векторови, следовательно, векторы
База и базис системы векторовкомпланарные, что противоречит условию.

б) Остается случай
База и базис системы векторов, т.е.
База и базис системы векторов. Тогда из равенства (3) получаем или

Так как
База и базис системы векторов– базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что
База и базис системы векторови
База и базис системы векторов, ч.т.д.

1) Существует взаимно однозначное соответствие между множеством векторов векторного пространства
База и базис системы векторови множеством действительных чисел R.

2) Существует взаимно однозначное соответствие между множеством векторов векторного пространства
База и базис системы векторови декартовым квадратом
База и базис системы векторов

3) Существует взаимно однозначное соответствие между множеством векторов векторного пространства
База и базис системы векторови декартовым кубом
База и базис системы векторовмножества действительных чисел R.

Доказательство. Докажем третье утверждение. Первые два доказываются аналогично.

Выберем и зафиксируем в пространстве
База и базис системы векторовкакой-нибудь базис
База и базис системы векторови устроим отображение
База и базис системы векторовпо следующему правилу:

т.е. каждому вектору поставим в соответствие упорядоченный набор его координат.

Так как при фиксированном базисе каждый вектор имеет единственный набор координат, то соответствие, задаваемое правилом (6) действительно является отображением.

Из доказательства теоремы следует, что различные векторы имеют различные координаты относительно одного и того же базиса, т.е. отображение (6) является инъекцией.

Пусть
База и базис системы векторовпроизвольный упорядоченный набор действительных чисел.

Рассмотрим вектор
База и базис системы векторов. Этот вектор по построению имеет координаты
База и базис системы векторов. Следовательно, отображение (6) является сюръекцией.

Отображение, которое одновременно инъективное и сюръективное является биективным, т.е. взаимно однозначным, ч.т.д.

Теорема. (О равенстве двух векторов.)

Два вектора равны тогда и только тогда, когда равны их координаты относительно одного и того же базиса.

Доказательство сразу же вытекает из предыдущего следствия.

п.3. Размерность векторного пространства.

Определение. Число векторов в базисе векторного пространства называется его размерностью.

Обозначение:
База и базис системы векторов– размерность векторного пространства V.

Таким образом, в соответствие с этим и предыдущими определениями, имеем:

1)
База и базис системы векторов– векторное пространство векторов прямой L.

База и базис системы векторов– базис
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов– разложение вектора
База и базис системы векторовпо базису
База и базис системы векторов,
База и базис системы векторов– координата вектора База и базис системы векторовотносительно базиса
База и базис системы векторов.

2)
База и базис системы векторов– векторное пространство векторов плоскости Р.

База и базис системы векторов– базис
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов– разложение вектора
База и базис системы векторовпо базису
База и базис системы векторов,
База и базис системы векторов– координаты вектора База и базис системы векторовотносительно базиса
База и базис системы векторов.

3)
База и базис системы векторов– векторное пространство векторов в пространстве точек S.

База и базис системы векторов– базис
База и базис системы векторов,
База и базис системы векторов,
База и базис системы векторов– разложение вектора
База и базис системы векторовпо базису
База и базис системы векторов,
База и базис системы векторов– координаты вектора База и базис системы векторовотносительно базиса
База и базис системы векторов.

Замечание. Если
База и базис системы векторов, то
База и базис системы векторови можно выбрать базис
База и базис системы векторовпространства
База и базис системы векторовтак, что
База и базис системы векторов– базис
База и базис системы векторови
База и базис системы векторов– базис
База и базис системы векторов. Тогда
База и базис системы векторов, и
База и базис системы векторов, .

Таким образом, любой вектор прямой L, плоскости Р и пространства S можно разложить по базису
База и базис системы векторов:

Обозначение. В силу теоремы о равенстве векторов, мы можем отождествить любой вектор с упорядоченной тройкой действительных чисел и писать:

Это возможно лишь том случае, когда базис
База и базис системы векторовфиксирован и нет опасности спутаться.

Определение. Запись вектора в виде упорядоченной тройки действительных чисел называют координатной формой записи вектора:
База и базис системы векторов.

п.4. Линейные операции с векторами в координатной форме записи.

Пусть
База и базис системы векторов– базис пространства
База и базис системы векторови
База и базис системы векторов– два его произвольных вектора. Пусть
База и базис системы векторови
База и базис системы векторов– запись этих векторов в координатной форме. Пусть, далее,
База и базис системы векторов– произвольное действительное число. В этих обозначениях имеет место следующая теорема.

Теорема. (О линейных операциях с векторами в координатной форме.)

2)
База и базис системы векторов.

Другими словами, для того, чтобы сложить два вектора нужно сложить их соответствующие координаты, а чтобы умножить вектор на число, нужно каждую координату данного вектора умножить на данное число.

Доказательство. Так как по условию теоремы , , то используя аксиомы векторного пространства, которым подчиняются операции сложения векторов и умножения вектора на число, получаем:

Аналогично доказывается второе равенство.

п.5. Ортогональные векторы. Ортонормированный базис.

Определение. Два вектора называются ортогональными, если угол между ними равен прямому углу, т.е.
База и базис системы векторов.

Обозначение:
База и базис системы векторов– векторы База и базис системы векторови База и базис системы векторовортогональны.

Определение. Тройка векторов
База и базис системы векторовназывается ортогональной, если эти векторы попарно ортогональны друг другу, т.е.
База и базис системы векторов,
База и базис системы векторов.

Определение. Тройка векторов
База и базис системы векторовназывается ортонормированной, если она ортогональная и длины всех векторов равны единице:
База и базис системы векторов.

Замечание. Из определения следует, что ортогональная и, следовательно, ортонормированная тройка векторов является некомпланарной.

Определение. Упорядоченная некомпланарная тройка векторов
База и базис системы векторов, отложенных от одной точки, называется правой (правоориентированной), если при наблюдении с конца третьего вектора База и базис системы векторовна плоскость, в которой лежат первые два вектора База и базис системы векторови База и базис системы векторов, кратчайший поворот первого вектора База и базис системы векторовко второму База и базис системы векторовпроисходит против часовой стрелки. В противном случае тройка векторов называется левой (левоориентированной).

Здесь, на рис.6 изображена правая тройка векторов
База и базис системы векторов. На следующем рис.7 изображена левая тройка векторов
База и базис системы векторов:

База и базис системы векторов

Определение. Базис
База и базис системы вектороввекторного пространства
База и базис системы векторовназывается ортонормированным, если
База и базис системы векторовортонормированная тройка векторов.

Обозначение. В дальнейшем мы будем пользоваться правым ортонормированным базисом
База и базис системы векторов, см. следующий рисунок.

Выражение вида называется линейной комбинацией векторов A 1 , A 2 . A n с коэффициентами λ 1, λ 2 . λ n .

Определение линейной зависимости системы векторов

Система векторов A 1 , A 2 . A n называется линейно зависимой , если существует ненулевой набор чисел λ 1, λ 2 . λ n , при котором линейная комбинация векторов λ 1 *A 1 +λ 2 *A 2 +. +λ n *A n равна нулевому вектору , то есть система уравнений: имеет ненулевое решение.
Набор чисел λ 1, λ 2 . λ n является ненулевым, если хотя бы одно из чисел λ 1, λ 2 . λ n отлично от нуля.

Определение линейной независимости системы векторов

Система векторов A 1 , A 2 . A n называется линейно независимой , если линейная комбинация этих векторов λ 1 *A 1 +λ 2 *A 2 +. +λ n *A n равна нулевому вектору только при нулевом наборе чисел λ 1, λ 2 . λ n , то есть система уравнений: A 1 x 1 +A 2 x 2 +. +A n x n =Θ имеет единственное нулевое решение.

Проверить, является ли линейно зависимой система векторов

База и базис системы векторов

1. Составляем систему уравнений :

2. Решаем ее методом Гаусса . Преобразования Жордано системы приведены в таблице 29.1. При расчете правые части системы не записываются так как они равны нулю и при преобразованиях Жордана не изменяются.

База и базис системы векторов

3. Из последних трех строк таблицы записываем разрешенную систему, равносильную исходной системе:

База и базис системы векторов

5. Задав по своему усмотрению значение свободной переменной x 3 =1, получаем частное ненулевое решение X=(-3,2,1).

Ответ: Таким образом, при ненулевом наборе чисел (-3,2,1) линейная комбинация векторов равняется нулевому вектору -3A 1 +2A 2 +1A 3 =Θ. Следовательно, система векторов линейно зависимая .

Свойства систем векторов

Свойство (1)
Если система векторов линейно зависимая, то хотя бы один из векторов разлагается по остальным и, наоборот, если хотя бы один из векторов системы разлагается по остальным, то система векторов линейно зависимая.

Свойство (2)
Если какая-либо подсистема векторов линейно зависимая, то и вся система линейно зависимая.

Свойство (3)
Если система векторов линейно независимая, то любая ее подсистема линейно независимая.

Свойство (4)
Любая система векторов, содержащая нулевой вектор, линейно зависимая.

Свойство (5)
Система m-мерных векторов всегда является линейно зависимой, если число векторов n больше их размерности (n>m)

Видео:Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Базис системы векторов

Базисом системы векторов A 1 , A 2 . A n называется такая подсистема B 1 , B 2 . B r (каждый из векторов B 1 ,B 2 . B r является одним из векторов A 1 , A 2 . A n) , которая удовлетворяет следующим условиям:
1. B 1 ,B 2 . B r линейно независимая система векторов;
2. любой вектор A j системы A 1 , A 2 . A n линейно выражается через векторы B 1 ,B 2 . B r

r — число векторов входящих в базис.

Теорема 29.1 О единичном базисе системы векторов.

Если система m-мерных векторов содержит m различных единичных векторов E 1 E 2 . E m , то они образуют базис системы.

Алгоритм нахождения базиса системы векторов

Для того, чтобы найти базис системы векторов A 1 ,A 2 . A n необходимо:

  • Составить соответствующую системе векторов однородную систему уравнений A 1 x 1 +A 2 x 2 +. +A n x n =Θ
  • Привести эту систему

Популярное

  • База и базис системы векторовБизнес идеи — промышленный альпинизм как бизнес Человеку, который имеет свой плей л.

База и базис системы векторовСовместимость стрельца и весов Человеку, который имеет свой плей л.

База и базис системы векторовКак легко избавиться от проблем и начать радоваться жизни! Человеку, который имеет свой плей л.

База и базис системы векторовЗнаки зодиака по стихиям и их совместимость Все о моем знаке Человеку, который имеет свой плей л.

База и базис системы векторовВыращивание и сбыт вешенки для получения прибыли Человеку, который имеет свой плей л.

Свежие записи

  • База и базис системы векторовВкусные букеты из овощей и фруктов с поздравлениями Человеку, который имеет свой плей л.

База и базис системы векторовПетровская икона Богоматери, некий «700-летний юбилей свт Человеку, который имеет свой плей л.

База и базис системы векторовКак женить на себе мужчину рака Человеку, который имеет свой плей л.

База и базис системы векторовАвтоковрики EVA: Как шить? Человеку, который имеет свой плей л.

База и базис системы векторовМедитация на омоложение и усиление привлекательности Правила эффективной медитации Человеку, который имеет свой плей л.

🎬 Видео

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Линейная зависимость и линейная независимость векторов.Скачать

Линейная зависимость и  линейная независимость  векторов.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Базис векторов и разложение вектора по базису как найти, примерСкачать

Базис векторов и разложение вектора по базису   как найти, пример

19. Ранг матрицы. Ранг системы векторовСкачать

19. Ранг матрицы. Ранг системы векторов

Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

Что такое векторный базис? Душкин объяснитСкачать

Что такое векторный базис? Душкин объяснит

Линейная зависимость векторовСкачать

Линейная зависимость векторов

Векторное пространство, базис, перевод вектора из базиса в базис.Скачать

Векторное пространство, базис, перевод вектора из базиса в базис.
Поделиться или сохранить к себе: