2 прямые на плоскости называются параллельными прямыми если они

Содержание
  1. Параллельные прямые. Признаки параллельности прямых
  2. Признаки параллельности прямых
  3. Параллельные прямые — определение и вычисление с примерами решения
  4. Определения параллельных прямых
  5. Признаки параллельности двух прямых
  6. Аксиома параллельных прямых
  7. Обратные теоремы
  8. Пример №1
  9. Параллельность прямых на плоскости
  10. Две прямые, перпендикулярные третьей
  11. Накрест лежащие, соответственные и односторонние углы
  12. Признаки параллельности прямых
  13. Пример №2
  14. Пример №3
  15. Пример №4
  16. Аксиома параллельных прямых
  17. Пример №5
  18. Пример №6
  19. Свойства параллельных прямых
  20. Пример №7
  21. Пример №8
  22. Углы с соответственно параллельными и соответственно перпендикулярными сторонами
  23. Расстояние между параллельными прямыми
  24. Пример №9
  25. Пример №10
  26. Справочный материал по параллельным прямым
  27. Перпендикулярные и параллельные прямые
  28. Параллельность прямых
  29. Определение параллельности прямых
  30. Свойства и признаки параллельных прямых
  31. Задача 1
  32. Задача 2
  33. 📹 Видео

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельные прямые. Признаки параллельности прямых

Как мы знаем, прямые либо пересекаются (т.е. имеют одну общую точку), либо не пересекаются (т.е. не имеют ни одной общей точки).

Определение 1. Две прямые на плоскости называются параллельными , если они не пересекаются.

Если прямые a и b параллельны, то это обозначают так:

2 прямые на плоскости называются параллельными прямыми если они.

На рисунке Рис.1 изображены прямые a и b, которые перпендикулярны к прямой c. В этом случае эти прямые не пересекаются (см. статью Перперндикулярные прямые), т.е. они параллельны (Определение 1).

2 прямые на плоскости называются параллельными прямыми если они

Понятие параллельности можно распространять и на отрезки.

Определение 2. Два отрезка называются параллельными , если они лежат на параллельных прямых (Рис.2).

2 прямые на плоскости называются параллельными прямыми если они

Аналогично определяется параллельность отрезка и прямой, отрезка и луча, двух лучей, луча и прямой.

2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они

На Рис.3 отрезок AB пераллелен к прямой a поскольку прямая, проходящай через отроезок AB параллельна прямой a. На рисунке Рис.4 отрезок AB пераллелен к лучу a так как прямые, проходящие через отрезок AB и луч a параллельны. Для Рис.5 и Рис.6 можно сделать аналогичные рассуждения.

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Признаки параллельности прямых

Определение 3. Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.

При пересечении прямой c с a и b образуются восемь углов, некоторые пары из которых имеют специальные названия (Рис.7):

2 прямые на плоскости называются параллельными прямыми если они
  • накрест лежащие углы: 3 и 5, 4 и 6;
  • односторонние углы: 4 и 5, 3 и 6;
  • соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.

Определим признаки параллельности двух прямых, связанные с этими парамы углов.

Теорема 1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Доказательство. Предположим, что при пересечении прямых a и b секущей AB накрест лежащие углы равны: 2 прямые на плоскости называются параллельными прямыми если они(Рис.8).

2 прямые на плоскости называются параллельными прямыми если они

Докажем, что 2 прямые на плоскости называются параллельными прямыми если они.

Если углы 1 и 2 прямые (Рис.9), то получается, что прямые a и b перпендикулярны прямой AB и, следовательно, они параллельны (теорема 1 статьи Перперндикулярные прямые и определение 1 настоящей статьи).

2 прямые на плоскости называются параллельными прямыми если они

Предположим, что углы 1 и 2 не прямые (Рис.10).

2 прямые на плоскости называются параллельными прямыми если они

Найдем середину отрезка AB и обозначим через O. Из точки O проведем перпендикуляр OM к прямой a. На прямой b отложим отрезок BN равной отрезку MA. Треугольники OAM и OBN равны по двум сторонам и углу между ними, так как OA=OB, MA=NB, 2 прямые на плоскости называются параллельными прямыми если они. Тогда 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они.

2 прямые на плоскости называются параллельными прямыми если ониозначает, что точка N лежит на продолжении луча MO, т.е. точки M, O, N лежат на одной прямой. Угол BNO прямой (поскольку угол AMO прямой). Получается, что прямые a и b перпендикулярны к прямой MN, следовательно они параллельны. 2 прямые на плоскости называются параллельными прямыми если они

Теорема 2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Доказательство. Пусть при пересечении прямых a и b секущей с соответственные углы равны, например 2 прямые на плоскости называются параллельными прямыми если они(Рис.11).

2 прямые на плоскости называются параллельными прямыми если они

Так как углы 2 и 3 вертикальные, то 2 прямые на плоскости называются параллельными прямыми если они. Тогда из 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если ониследует, что 2 прямые на плоскости называются параллельными прямыми если они. Но углы 1 и 3 накрест лежащие и, по теореме 1, прямые a и b параллельны. 2 прямые на плоскости называются параллельными прямыми если они

Теорема 3. Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Доказательство. Пусть при пересечении прямых a и b секущей с сумма односторонних углов равна 180°, например 2 прямые на плоскости называются параллельными прямыми если они(Рис.11). Из рисунка видно, что углы 4 и 3 смежные, т.е. 2 прямые на плоскости называются параллельными прямыми если они. Из 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если ониследует, что 2 прямые на плоскости называются параллельными прямыми если они. Но углы 1 и 3 накрест лежащие и, по теореме 1 прямые a и b параллельны.2 прямые на плоскости называются параллельными прямыми если они

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллельные прямые — определение и вычисление с примерами решения

Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ 2 прямые на плоскости называются параллельными прямыми если они). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF 2 прямые на плоскости называются параллельными прямыми если они

2 прямые на плоскости называются параллельными прямыми если они

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Определения параллельных прямых

На рисунке 10 прямые 2 прямые на плоскости называются параллельными прямыми если ониимеют общую точку М. Точка А принадлежит прямой 2 прямые на плоскости называются параллельными прямыми если они, но не принадлежит прямой 2 прямые на плоскости называются параллельными прямыми если они. Говорят, что прямые 2 прямые на плоскости называются параллельными прямыми если онипересекаются в точке М.
2 прямые на плоскости называются параллельными прямыми если они

Это можно записать так: 2 прямые на плоскости называются параллельными прямыми если они— знак принадлежности точки прямой, «2 прямые на плоскости называются параллельными прямыми если они» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые 2 прямые на плоскости называются параллельными прямыми если онипараллельны (рис. 11, с. 11), то пишут 2 прямые на плоскости называются параллельными прямыми если они

2 прямые на плоскости называются параллельными прямыми если они

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые 2 прямые на плоскости называются параллельными прямыми если ониперпендикулярны (рис. 12), то пишут 2 прямые на плоскости называются параллельными прямыми если они

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

  1. углы 3 и 5, 4 и 6 называются внутренними накрест лежащими;
  2. углы 4 и 5, 3 и 6 называются внутренними односторонними;
  3. углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными.

2 прямые на плоскости называются параллельными прямыми если они

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

  1. Пусть при пересечении прямых а и b секущей АВ внутренние накрест лежащие углы 1 и 2 равны (рис. 86, б). Докажем, что а2 прямые на плоскости называются параллельными прямыми если ониb.
  2. Если 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2 = 90°, то а 2 прямые на плоскости называются параллельными прямыми если ониАВ и b 2 прямые на плоскости называются параллельными прямыми если ониАВ. Отсюда в силу теоремы 1 (глава 3, § 2) следует, что а2 прямые на плоскости называются параллельными прямыми если ониb.
  3. Если 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они22 прямые на плоскости называются параллельными прямыми если они90°, то из середины О отрезка АВ проведем отрезок ОF 2 прямые на плоскости называются параллельными прямыми если ониa.
  4. На прямой b отложим отрезок ВF1 = АF и проведем отрезок ОF1.
  5. Заметим, что 2 прямые на плоскости называются параллельными прямыми если ониОFА = 2 прямые на плоскости называются параллельными прямыми если ониОF1В по двум сторонам и углу между ними (АО = ВО, АF= BF1 и 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2). Из равенства этих треугольников следует, что 2 прямые на плоскости называются параллельными прямыми если ониЗ = 2 прямые на плоскости называются параллельными прямыми если они4 и 2 прямые на плоскости называются параллельными прямыми если они5 = 2 прямые на плоскости называются параллельными прямыми если они6.
  6. Так как 2 прямые на плоскости называются параллельными прямыми если они3 = 2 прямые на плоскости называются параллельными прямыми если они4, а точки А, В и О лежат на одной прямой, то точки F1, F и О также лежат на одной прямой.
  7. Из равенства 2 прямые на плоскости называются параллельными прямыми если они5 = 2 прямые на плоскости называются параллельными прямыми если они6 следует, что 2 прямые на плоскости называются параллельными прямыми если они6 = 90°. Получаем, что а 2 прямые на плоскости называются параллельными прямыми если ониFF1 и b 2 прямые на плоскости называются параллельными прямыми если ониFF1, а а2 прямые на плоскости называются параллельными прямыми если ониb.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что 2 прямые на плоскости называются параллельными прямыми если они1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2. Докажем, что прямые a и b параллельны (рис. 87, а).

2 прямые на плоскости называются параллельными прямыми если они
2) Заметим, что 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если они3 как вертикальные углы.

3) Из равенств 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2 и 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если они3 следует, что 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что а2 прямые на плоскости называются параллельными прямыми если ониb.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и 2 прямые на плоскости называются параллельными прямыми если ониAOF = 2 прямые на плоскости называются параллельными прямыми если ониABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

  1. Пусть при пересечении двух прямых а и b секущей с сумма градусных мер внутренних односторонних углов равна 180°, например 2 прямые на плоскости называются параллельными прямыми если они1 + 2 прямые на плоскости называются параллельными прямыми если они2 = 180° (рис. 87, в).
  2. Заметим, что 2 прямые на плоскости называются параллельными прямыми если они3 + 2 прямые на плоскости называются параллельными прямыми если они2 = 180°, так как углы 3 и 2 являются смежными.
  3. Из равенств 2 прямые на плоскости называются параллельными прямыми если ониl + 2 прямые на плоскости называются параллельными прямыми если они2 = 180° и 2 прямые на плоскости называются параллельными прямыми если они3 + 2 прямые на плоскости называются параллельными прямыми если они2 = 180° следует, что 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они3.
  4. Поскольку равны внутренние накрест лежащие углы 1 и 3, то прямые а и b параллельны.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a, затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку O 2 прямые на плоскости называются параллельными прямыми если ониa проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

2 прямые на плоскости называются параллельными прямыми если они

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Пусть прямые а и b параллельны прямой с. Докажем, что а2 прямые на плоскости называются параллельными прямыми если ониb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

2 прямые на плоскости называются параллельными прямыми если они

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если ониF и 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если ониF (рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, а2 прямые на плоскости называются параллельными прямыми если ониb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

2 прямые на плоскости называются параллельными прямыми если они

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

2 прямые на плоскости называются параллельными прямыми если они

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и 2 прямые на плоскости называются параллельными прямыми если они2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и 2 прямые на плоскости называются параллельными прямыми если они2 равны, поэтому по признаку параллельности прямых следует, что AQ 2 прямые на плоскости называются параллельными прямыми если ониb. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2.

Например, пусть прямая l параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда 2 прямые на плоскости называются параллельными прямыми если они3 = 2 прямые на плоскости называются параллельными прямыми если ониB как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

  1. Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (рис. 96, а).
  2. Так как прямые а и b параллельны, то по теореме 3 данного параграфа накрест лежащие углы 1 и 3 равны, т. е. 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они3. Кроме того, 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если они3, так как они вертикальные.
  3. Из равенств 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они3 и 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если они3 следует, что 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2.

2 прямые на плоскости называются параллельными прямыми если они

Например, пусть прямая l параллельна биссектрисе AF треугольника ABC (рис. 96, б), тогда 2 прямые на плоскости называются параллельными прямыми если они4 = 2 прямые на плоскости называются параллельными прямыми если ониBAF. Действительно, 2 прямые на плоскости называются параллельными прямыми если они4 и 2 прямые на плоскости называются параллельными прямыми если ониFAC равны как соответственные углы, a 2 прямые на плоскости называются параллельными прямыми если ониFAC = 2 прямые на плоскости называются параллельными прямыми если ониBAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что 2 прямые на плоскости называются параллельными прямыми если они1 + 2 прямые на плоскости называются параллельными прямыми если они2 = 180° (рис. 97, а).

2 прямые на плоскости называются параллельными прямыми если они

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они3.

3) Углы 2 и 3 смежные, следовательно, 2 прямые на плоскости называются параллельными прямыми если они2 + 2 прямые на плоскости называются параллельными прямыми если они3= 180°.

4) Из равенств 2 прямые на плоскости называются параллельными прямыми если они= 2 прямые на плоскости называются параллельными прямыми если они3 и 2 прямые на плоскости называются параллельными прямыми если они2 + 2 прямые на плоскости называются параллельными прямыми если они3 = 180° следует, что 2 прямые на плоскости называются параллельными прямыми если они1 + 2 прямые на плоскости называются параллельными прямыми если они2 = 180°.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда 2 прямые на плоскости называются параллельными прямыми если ониBAF + 2 прямые на плоскости называются параллельными прямыми если ониTFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

1) Пусть прямые а и b параллельны и с2 прямые на плоскости называются параллельными прямыми если ониа (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

2 прямые на плоскости называются параллельными прямыми если они

Так как 2 прямые на плоскости называются параллельными прямыми если они1 = 90°, то и 2 прямые на плоскости называются параллельными прямыми если они2 = 2 прямые на плоскости называются параллельными прямыми если они1 = 90°, а, значит, с2 прямые на плоскости называются параллельными прямыми если ониb.

Что и требовалось доказать.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онипараллельны, то есть 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они 2 прямые на плоскости называются параллельными прямыми если они(рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая 2 прямые на плоскости называются параллельными прямыми если они, лучи АВ и КМ.

2 прямые на плоскости называются параллельными прямыми если они

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, то 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они 2 прямые на плоскости называются параллельными прямыми если они(рис. 161).

2 прямые на плоскости называются параллельными прямыми если они

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая 2 прямые на плоскости называются параллельными прямыми если они(рис. 162). При помощи чертежного треугольника строят прямую 2 прямые на плоскости называются параллельными прямыми если они, перпендикулярную прямой 2 прямые на плоскости называются параллельными прямыми если они. Затем сдвигают треугольник вдоль прямой 2 прямые на плоскости называются параллельными прямыми если онии строят другую перпендикулярную прямую 2 прямые на плоскости называются параллельными прямыми если они, затем — третью прямую 2 прямые на плоскости называются параллельными прямыми если онии т. д. Поскольку прямые 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если ониперпендикулярны одной прямой 2 прямые на плоскости называются параллельными прямыми если они, то из указанной теоремы следует, что 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

2 прямые на плоскости называются параллельными прямыми если они

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

2 прямые на плоскости называются параллельными прямыми если они

По рисунку 163 объясните процесс проведения прямой 2 прямые на плоскости называются параллельными прямыми если они, параллельной прямой 2 прямые на плоскости называются параллельными прямыми если онии проходящей через точку К.

Из построения следует: так как 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, то 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они. Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онитретьей прямой 2 прямые на плоскости называются параллельными прямыми если они, которая называется секущей, образуется 8 углов (рис. 164).

2 прямые на плоскости называются параллельными прямыми если они

Некоторые пары этих углов имеют специальные названия:

  • 2 прямые на плоскости называются параллельными прямыми если они3 и2 прямые на плоскости называются параллельными прямыми если они5,2 прямые на плоскости называются параллельными прямыми если они4 и2 прямые на плоскости называются параллельными прямыми если они6 — внутренние накрест лежащие углы;
  • 2 прямые на плоскости называются параллельными прямыми если они2 и2 прямые на плоскости называются параллельными прямыми если они8,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они7 — внешние накрест лежащие углы;
  • 2 прямые на плоскости называются параллельными прямыми если они2 и2 прямые на плоскости называются параллельными прямыми если они6,2 прямые на плоскости называются параллельными прямыми если они3 и2 прямые на плоскости называются параллельными прямыми если они7,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они5,2 прямые на плоскости называются параллельными прямыми если они4 и2 прямые на плоскости называются параллельными прямыми если они8 — соответственные углы;
  • 2 прямые на плоскости называются параллельными прямыми если они3 и2 прямые на плоскости называются параллельными прямыми если они6,2 прямые на плоскости называются параллельными прямыми если они4 и2 прямые на плоскости называются параллельными прямыми если они5 — внутренние односторонние углы;
  • 2 прямые на плоскости называются параллельными прямыми если они2 и2 прямые на плоскости называются параллельными прямыми если они7,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они8 — внешние односторонние углы.

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD.
2 прямые на плоскости называются параллельными прямыми если они

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они— данные прямые, АВ — секущая, 2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2 (рис. 166).

2 прямые на плоскости называются параллельными прямыми если они

Доказать: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую 2 прямые на плоскости называются параллельными прямыми если онии продлим его до пересечения с прямой 2 прямые на плоскости называются параллельными прямыми если онив точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, 2 прямые на плоскости называются параллельными прямыми если они1 = 2 прямые на плоскости называются параллельными прямыми если они2 по условию, 2 прямые на плоскости называются параллельными прямыми если ониBMK =2 прямые на плоскости называются параллельными прямыми если ониAMN как вертикальные). Из равенства треугольников следует, что 2 прямые на плоскости называются параллельными прямыми если ониANM =2 прямые на плоскости называются параллельными прямыми если ониBKM = 90°. Тогда прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если ониперпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: 2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2 (рис. 167).

2 прямые на плоскости называются параллельными прямыми если они

Доказать: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онии секущей 2 прямые на плоскости называются параллельными прямыми если они. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они. Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: 2 прямые на плоскости называются параллельными прямыми если ониl +2 прямые на плоскости называются параллельными прямыми если они2 = 180° (рис. 168).

2 прямые на плоскости называются параллельными прямыми если они

Доказать: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онии секущей 2 прямые на плоскости называются параллельными прямыми если они. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они. Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

2 прямые на плоскости называются параллельными прямыми если они

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (2 прямые на плоскости называются параллельными прямыми если ониAOB = 2 прямые на плоскости называются параллельными прямыми если ониDOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что 2 прямые на плоскости называются параллельными прямыми если ониBAO=2 прямые на плоскости называются параллельными прямыми если ониCDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D, 2 прямые на плоскости называются параллельными прямыми если ониBAK = 26°, 2 прямые на плоскости называются параллельными прямыми если ониADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

2 прямые на плоскости называются параллельными прямыми если они

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

2 прямые на плоскости называются параллельными прямыми если ониBAC = 2 •2 прямые на плоскости называются параллельными прямыми если ониBAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку 2 прямые на плоскости называются параллельными прямыми если ониADK +2 прямые на плоскости называются параллельными прямыми если ониBAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

2 прямые на плоскости называются параллельными прямыми если они

Доказательство:

Так как ВС — биссектриса угла ABD, то 2 прямые на плоскости называются параллельными прямыми если они1=2 прямые на плоскости называются параллельными прямыми если они2. Так как 2 прямые на плоскости называются параллельными прямыми если ониBAC равнобедренный (АВ=АС по условию), то 2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они3 как углы при основании равнобедренного треугольника. Тогда 2 прямые на плоскости называются параллельными прямыми если они2 =2 прямые на плоскости называются параллельными прямыми если они3. Но углы 2 и 3 являются накрест лежащими при прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онии секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, 2 прямые на плоскости называются параллельными прямыми если они||2 прямые на плоскости называются параллельными прямыми если они.

Реальная геометрия

2 прямые на плоскости называются параллельными прямыми если они

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

2 прямые на плоскости называются параллельными прямыми если они

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая 2 прямые на плоскости называются параллельными прямыми если онипроходит через точку М и параллельна прямой 2 прямые на плоскости называются параллельными прямыми если они(рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой 2 прямые на плоскости называются параллельными прямыми если онив некоторой точке, пусть и достаточно удаленной.

2 прямые на плоскости называются параллельными прямыми если они

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: 2 прямые на плоскости называются параллельными прямыми если они||2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они(рис. 187).

2 прямые на плоскости называются параллельными прямыми если они

Доказать: 2 прямые на плоскости называются параллельными прямыми если они||2 прямые на плоскости называются параллельными прямыми если они.

Доказательство:

Предположим, что прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онине параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они, параллельные третьей прямой 2 прямые на плоскости называются параллельными прямыми если они. А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и 2 прямые на плоскости называются параллельными прямыми если они||2 прямые на плоскости называются параллельными прямыми если они. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2,2 прямые на плоскости называются параллельными прямыми если они3 =2 прямые на плоскости называются параллельными прямыми если они4. Доказать, что 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они.

2 прямые на плоскости называются параллельными прямыми если они

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онипо признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они. Так как 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, то 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онипо теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они— данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

2 прямые на плоскости называются параллельными прямыми если они

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим прямую 2 прямые на плоскости называются параллельными прямыми если они, которая параллельна прямой 2 прямые на плоскости называются параллельными прямыми если онипо признаку параллельности прямых. Если предположить, что прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онине пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они, которые параллельны прямой 2 прямые на плоскости называются параллельными прямыми если они. Это противоречит аксиоме параллельных прямых. Следовательно, прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онипересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, АВ — секущая,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они2 — внутренние накрест лежащие (рис. 195).

2 прямые на плоскости называются параллельными прямыми если они

Доказать: 2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2.

Доказательство:

Предположим, что2 прямые на плоскости называются параллельными прямыми если они1 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онипо признаку параллельности прямых. Получили, что через точку В проходят две прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они, параллельные прямой 2 прямые на плоскости называются параллельными прямыми если они. А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно и2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они— секущая,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они2 — соответственные (рис. 196).

2 прямые на плоскости называются параллельными прямыми если они

Доказать:2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они. Углы 2 и 3 равны как вертикальные. Следовательно,2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, 2 прямые на плоскости называются параллельными прямыми если они— секущая,2 прямые на плоскости называются параллельными прямыми если они1 и2 прямые на плоскости называются параллельными прямыми если они2 — внутренние односторонние (рис. 197).

2 прямые на плоскости называются параллельными прямыми если они

Доказать:2 прямые на плоскости называются параллельными прямыми если ониl +2 прямые на плоскости называются параллельными прямыми если они2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов 2 прямые на плоскости называются параллельными прямыми если они2 +2 прямые на плоскости называются параллельными прямыми если они3 = 180°. По свойству параллельных прямых2 прямые на плоскости называются параллельными прямыми если ониl =2 прямые на плоскости называются параллельными прямыми если они3 как накрест лежащие. Следовательно,2 прямые на плоскости называются параллельными прямыми если ониl +2 прямые на плоскости называются параллельными прямыми если они2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, т. е.2 прямые на плоскости называются параллельными прямыми если они1 = 90°. Согласно следствию 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, т. е.2 прямые на плоскости называются параллельными прямыми если они2 = 90°.

2 прямые на плоскости называются параллельными прямыми если они

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

  • а) если ссылаются на признак параллельности прямых, то требуется доказать параллельность некоторых прямых;
  • б) если ссылаются на свойство параллельных прямых, то параллельные прямые даны, и нужно воспользоваться каким-то их свойством.

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

2 прямые на плоскости называются параллельными прямыми если они

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда 2 прямые на плоскости называются параллельными прямыми если ониАОВ =2 прямые на плоскости называются параллельными прямыми если ониDOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

2 прямые на плоскости называются параллельными прямыми если они

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,2 прямые на плоскости называются параллельными прямыми если ониABD =2 прямые на плоскости называются параллельными прямыми если ониCDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,2 прямые на плоскости называются параллельными прямыми если ониADB =2 прямые на плоскости называются параллельными прямыми если ониCBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онипараллельны, то пишут: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они(рис. 211).

2 прямые на плоскости называются параллельными прямыми если они

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

2 прямые на плоскости называются параллельными прямыми если они

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней.

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1) Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

2 прямые на плоскости называются параллельными прямыми если они

2) Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теореме2 прямые на плоскости называются параллельными прямыми если они2 =2 прямые на плоскости называются параллельными прямыми если они3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, то2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они3. Значит,2 прямые на плоскости называются параллельными прямыми если они1 =2 прямые на плоскости называются параллельными прямыми если они2.

2 прямые на плоскости называются параллельными прямыми если они

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

  1. Признаки параллельности прямых: «Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны».
  2. Свойства параллельных прямых: «Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°».
  3. На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
  4. На плоскости две прямые, параллельные третьей, параллельны между собой.
  5. Прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и другой прямой.
  6. Углы с соответственно параллельными сторонами или равны, или в сумме составляют 180°.
  7. Углы с соответственно перпендикулярными сторонами или равны, или в сумме составляют 180°.

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если онии АВ2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, то расстояние между прямыми 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если ониравно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой 2 прямые на плоскости называются параллельными прямыми если они. Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

2 прямые на плоскости называются параллельными прямыми если они

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они, А 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, С 2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, АВ2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они, CD2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они.

Доказать: АВ = CD (рис. 285).

2 прямые на плоскости называются параллельными прямыми если они

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онии секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (2 прямые на плоскости называются параллельными прямыми если ониCAD =2 прямые на плоскости называются параллельными прямыми если ониBDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой 2 прямые на плоскости называются параллельными прямыми если ониравны (см. рис. 285). Прямая 2 прямые на плоскости называются параллельными прямыми если они, проходящая через точку А параллельно прямой 2 прямые на плоскости называются параллельными прямыми если они, будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой 2 прямые на плоскости называются параллельными прямыми если они, которая параллельна прямой 2 прямые на плоскости называются параллельными прямыми если они. Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой 2 прямые на плоскости называются параллельными прямыми если онибудет перпендикуляром и к прямой 2 прямые на плоскости называются параллельными прямыми если они(см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, 2 прямые на плоскости называются параллельными прямыми если ониADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

2 прямые на плоскости называются параллельными прямыми если ониBAD +2 прямые на плоскости называются параллельными прямыми если ониADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

2 прямые на плоскости называются параллельными прямыми если они

Тогда 2 прямые на плоскости называются параллельными прямыми если ониBAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =2 прямые на плоскости называются параллельными прямыми если ониАВ = 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они— данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую 2 прямые на плоскости называются параллельными прямыми если они, параллельную прямой 2 прямые на плоскости называются параллельными прямыми если они.

2 прямые на плоскости называются параллельными прямыми если они

Тогда 2 прямые на плоскости называются параллельными прямыми если они|| 2 прямые на плоскости называются параллельными прямыми если они. По теореме о расстоянии между параллельными прямыми все точки прямой 2 прямые на плоскости называются параллельными прямыми если ониравноудалены от прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если онина расстояние 2 прямые на плоскости называются параллельными прямыми если ониАВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они, то есть расстояние от точки М до прямой 2 прямые на плоскости называются параллельными прямыми если ониравно 2 прямые на плоскости называются параллельными прямыми если ониАВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой 2 прямые на плоскости называются параллельными прямыми если они. Но через точку К проходит единственная прямая 2 прямые на плоскости называются параллельными прямыми если они, параллельная 2 прямые на плоскости называются параллельными прямыми если они. Значит, точка М принадлежит прямой 2 прямые на плоскости называются параллельными прямыми если они.

Таким образом, все точки прямой 2 прямые на плоскости называются параллельными прямыми если ониравноудалены от прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они. И любая равноудаленная от них точка лежит на прямой 2 прямые на плоскости называются параллельными прямыми если они. Прямая 2 прямые на плоскости называются параллельными прямыми если они, проходящая через середину общего перпендикуляра прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они, — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

2 прямые на плоскости называются параллельными прямыми если они

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

2 прямые на плоскости называются параллельными прямыми если они2 прямые на плоскости называются параллельными прямыми если они

Запомнить:

  1. Сумма углов треугольника равна 180°.
  2. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
  3. Катет меньше гипотенузы. Перпендикуляр меньше наклонной, проведенной из той же точки к одной прямой.
  4. Прямоугольные треугольники могут быть равны: 1) по двум катетам; 2) по катету и прилежащему острому углу; 3) по катету и противолежащему острому углу; 4) по гипотенузе и острому углу; 5) по катету и гипотенузе.
  5. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Если катет равен половине гипотенузы, то он лежит против угла в 30°.
  6. В треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.
  7. В треугольнике любая сторона меньше суммы двух других его сторон (неравенство треугольника).
  8. Любая точка биссектрисы равноудалена от сторон угла. Если точка внутри угла равноудалена от сторон угла, то она лежит на биссектрисе этого угла.
  9. Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Если в треугольнике медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
  10. Биссектрисы треугольника пересекаются в одной точке (2-я замечательная точка).
  11. Расстояние от любой точки одной из параллельных прямых до другой прямой есть величина постоянная.

Справочный материал по параллельным прямым

Параллельные прямые

  • ✓ Две прямые называют параллельными, если они не пересекаются.
  • ✓ Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • ✓ Две прямые, перпендикулярные третьей прямой, параллельны.
  • ✓ Если две прямые параллельны третьей прямой, то они параллельны.
  • ✓ Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Признаки параллельности двух прямых

  • ✓ Если две прямые а и b пересечь третьей прямой с, то образуется восемь углов (рис. 246). Прямую с называют секущей прямых а и b.
  • Углы 3 и 6, 4 и 5 называют односторонними.
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.
  • Углы 6 и 2, 5 и 1, 3 и 7, 4и 8 называют соответственными.

2 прямые на плоскости называются параллельными прямыми если они

  • ✓ Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.
  • ✓ Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.
  • ✓ Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Свойства параллельных прямых

  • ✓ Если две параллельные прямые пересекаются секущей, то:
  • • углы, образующие пару накрест лежащих углов, равны;
  • • углы, образующие пару соответственных углов, равны;
  • • сумма углов, образующих пару односторонних углов, равна 180°.
  • ✓ Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они— перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если они— параллельны.

2 прямые на плоскости называются параллельными прямыми если они

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых 2 прямые на плоскости называются параллельными прямыми если онии 2 прямые на плоскости называются параллельными прямыми если ониесли она пересекает их в двух точках (рис. 266).

2 прямые на плоскости называются параллельными прямыми если они

Пары углов 4 и 5; 3 и 6 называют внутренними односторонними; пары углов 4 и 6; 3 и 5внутренними накрест лежащими; пары углов 1 и 5; 2 и 6; 3 и 7; 4 и 8соответственными углами.

Признаки параллельности прямых:

  1. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  4. Две прямые, перпендикулярные третьей, параллельны.

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника — определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Параллельность прямых

2 прямые на плоскости называются параллельными прямыми если они

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

2 прямые на плоскости называются параллельными прямыми если они
два внутренних накрест лежащих угла равны между собой:

2 прямые на плоскости называются параллельными прямыми если они
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

2 прямые на плоскости называются параллельными прямыми если они

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

2 прямые на плоскости называются параллельными прямыми если они

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

2 прямые на плоскости называются параллельными прямыми если они

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

📹 Видео

Параллельность прямых, прямой и плоскостиСкачать

Параллельность прямых, прямой и плоскости

Параллельные, пересекающиеся и скрещивающиеся прямые | МатематикаСкачать

Параллельные, пересекающиеся и скрещивающиеся прямые | Математика

Доказательство теорем методом «от противного». Параллельность прямых на плоскости. Геометрия 7 классСкачать

Доказательство теорем методом «от противного». Параллельность прямых на плоскости. Геометрия 7 класс

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Геометрия 10 класс Параллельность прямых, прямой и плоскости теорияСкачать

Геометрия 10 класс Параллельность прямых, прямой и плоскости теория

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 класс

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости
Поделиться или сохранить к себе: