- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- Как называется четырехугольник с прямыми углами?
- Как называется с прямыми углами четырехугольник?
- Формула для площади
- Диагонали прямоугольника
- Симметрия прямоугольника
- Некоторые геометрические свойства прямоугольника
- Доказательство свойств 2, 3 и 4
- Является ли четырехугольник, у которого один угол прямой, прямоугольником?
- Где используется прямоугольник и его свойства?
- Расчет площади фигуры по известной диагонали
- Четырехугольник
- Определение четырехугольника
- Виды четырехугольников
- Обозначение четырехугольника
- Соседние вершины четырехугольника
- Смежные стороны четырехугольника
- Простой четырехугольник. Самопересекающийся четырехугольник
- Выпуклый четырехугольник
- Правильный четырехугольник
- Периметр четырехугольника
- Угол четырехугольника
- Внешний угол четырехугольника
- Диагональ четырехугольника
- Сумма углов четырехугольника
- Сумма внешних углов четырехугольника
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать
Как называется четырехугольник с прямыми углами?
Изучение геометрии начинается с рассмотрения простых фигур на плоскости, которые легко представить, используя абстрактное воображение. Одна из таких фигур — это четырехугольник с прямыми углами. В 3 классе общеобразовательных школ начинают знакомиться с ней и подробно исследуют ее свойства в старших классах. Рассмотрим главные характеристики этой фигуры в статье, а также приведем примеры ее использования в быту.
Видео:Угол между прямыми в пространстве. 11 класс.Скачать
Как называется с прямыми углами четырехугольник?
Слово «четырехугольник» говорит о том, что рассматриваемая фигура состоит из четырех углов. На плоскости она будет замкнута только в том случае, если имеет четыре прямые стороны. Если противоположные стороны попарно друг другу параллельны, то такая фигура называется параллелограммом. Его четыре угла попарно равны, однако они могут принимать произвольные значения от 0 o до 180 o . Если все его углы будут равны 90 o , то они называются прямыми. Четырехугольник с углами прямыми — это прямоугольник, и одновременно он является параллелограммом.
Прямоугольник характеризуется всего двумя параметрами: длинами его соседних сторон. Далее в статье будем обозначать их a и b. Если эти длины равны друг другу, то прямоугольник вырождается в квадрат.
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
Формула для площади
Прямоугольник — это совершенная фигура, под которую человек в ходе своей жизнедеятельности старается подогнать окружающие объекты, например кирпич, форму двора перед домом, монитор компьютера и так далее. Поэтому часто возникает задача расчета площади прямоугольника.
Рассчитать площадь рассматриваемой фигуры не представляет никакой сложности. Поскольку прямоугольник — это параллелограмм, то его площадь вычисляется как произведение двух длин: высоты, опущенной на некоторую сторону, и этой стороны. Высота параллелограмма находится как произведение синуса одного из его углов на сторону. Поскольку мы рассматриваем конкретный вид параллелограмма — прямоугольник, то синус прямого угла равен единице, это означает, что искомая формула для площади принимает следующий вид:
Площадь четырехугольника с прямым углом равна произведению длин двух его непараллельных сторон.
Ниже будет показано, как найти площадь прямоугольника, если известны другие его элементы, например длина диагонали.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Диагонали прямоугольника
На рисунке ниже изображен произвольный четырехугольник с прямыми углами и его две диагонали.
Видно, что диагонали разделяют на две части противоположные прямые углы фигуры. Будем обозначать точку пересечения диагоналей символом C. Она имеет важное значение, поскольку является центром симметрии фигуры. Длины обеих диагоналей равны.
Диагонали делят прямоугольник на четыре равнобедренных треугольника, для которых легко вычислить длины сторон и площадь. Каждые два треугольника, основания которых лежат на сторонах равной длины прямоугольника, являются одинаковыми.
Если провести одну диагональ, то она разделит прямоугольник на два совершенно одинаковых прямоугольных треугольника. Этот факт позволяет использовать тиорему Пифагора, чтобы рассчитать длину диагонали, зная катеты треугольника. Ниже рисунок показывает, как можно найти квадрат диагонали c прямоугольника. Здесь диагональ является гипотенузой, а стороны прямоугольника соответствуют катетам треугольника.
Тогда значение длины c будет равно:
Видео:Угол между прямыми в пространстве. 10 класс.Скачать
Симметрия прямоугольника
Как было отмечено, центр его симметрии — это точка C, образованная пересекающимися диагоналями. Рассматривая фигуру на плоскости, можно сказать, что ось, через эту точку проходящая и параллельная двум сторонам прямоугольника, является осью симметрии второго порядка, то есть поворот вокруг нее на 180 o переведет прямоугольник сам в себя. Поскольку рассматриваемый четырехугольник имеет две пары параллельных сторон, то очевидно, что он обладает двумя указанными осями симметрии.
Ось симметрии делит фигуру на два одинаковых прямоугольника со сторонами:
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Некоторые геометрические свойства прямоугольника
Поскольку рассматриваемая фигура обладает некоторой симметрией, имеет прямые углы и попарно параллельные стороны, то для нее можно выделить ряд важных свойств, используемых на практике. Перечислим их:
- Всякая прямая, которая проходит через центр C фигуры, пересекает ее в двух точках, находящихся на одинаковом расстоянии от точки C. Максимальное расстояние от C до стороны диагонали прямоугольника равно половине длины его диагонали, минимальное же расстояние равно половине длины его меньшей стороны.
- Если поделить одну сторону прямоугольника точкой пополам, то, соединяя эту точку с вершинами противоположной параллельной стороны, получаем равнобедренный треугольник с площадью, равной половине площади прямоугольника.
- Если точку, описанную выше, смещать из центра стороны к одному или другому ее концу, то равнобедренность отмеченного треугольника будет нарушаться, однако его площадь будет оставаться неизменной.
- Любой прямоугольник можно вписать в окружность.
Первое свойство является очевидным, поскольку любая прямая, проходящая через C, будет пересекать параллельные стороны фигуры. Докажем остальные свойства.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Доказательство свойств 2, 3 и 4
Рассмотрим сначала свойства 2 и 3. На рисунке ниже показан прямоугольник, на сторонах которого построены три треугольника:
Согласно формуле нахождения площади треугольника, для них можно записать:
Видно, что все высоты hi рассматриваемых треугольников равны длине стороны h прямоугольника. Это означает, что и их площади равны:
Теперь запишем формулу для площади S прямоугольника и поделим S на площадь одного из изображенных треугольников, получим:
Таким образом, прямоугольник имеет площадь в два раза больше, чем любой из изображенных треугольников, то есть мы доказали второе и третье свойства.
Что касается возможности вписывания с прямыми углами четырехугольника в окружность, то здесь следует рассуждать так: проведем диагонали фигуры, они пересекутся в точке C. Поскольку эта точка находится на одинаковом расстоянии от четырех вершин прямоугольника, то она может служить центром окружности. Если радиус окружности равен половине длины диагонали, то линия окружности пройдет через все четыре вершины прямоугольника, то есть он окажется вписанным в нее.
Видео:10 класс, 8 урок, Углы с сонаправленными сторонамиСкачать
Является ли четырехугольник, у которого один угол прямой, прямоугольником?
Ответ на вопрос будет положительным только в том случае, если рассматриваемый четырехугольник будет параллелограммом. В этом случае, если один угол равен 90 o , то два других смежных угла тоже будут прямыми, а значит, четвертый угол тоже будет равен 90 o . Мы нашли в четырехугольнике прямые углы все, значит он — прямоугольник.
В случае, если четырехугольник с одним прямым углом не будет иметь попарно параллельные стороны, то прямоугольником он не будет являться.
Видео:11 класс, 44 урок, Описанный четырехугольникСкачать
Где используется прямоугольник и его свойства?
При изготовлении тетрадных листов используют прямоугольную форму, причем отношение длин большей стороны к меньшей равно √2. Такая форма фигуры приводит к тому, что если ее поделить пополам симметричной осью, параллельной большей стороне, то у образованных двух новых прямоугольников отношение сторон также будет равно √2. Такое деление можно продолжать до бесконечности, при этом форма образующихся прямоугольников будет сохраняться.
Прямоугольная форма используется при производстве телевизионных экранов. До эры жидкокристаллических (ЖК) мониторов использовались электронно-лучевые экраны, отношение сторон которых было равно 4:3. С появлением ЖК-мониторов высокого разрешения, стали применять новый стандарт: 16:9.
Мозаика, которой украшают стены зданий, также имеет форму четырехугольника с прямыми углами.
Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать
Расчет площади фигуры по известной диагонали
Завершим статью рассмотрением вопроса вычисления площади четырехугольника, вершины прямых углов которого соединены диагональю. Рассчитаем площадь современного ЖК-монитора, если известно, что длина его диагонали с = 35 см.
Решить эту задачу можно потому, что монитор имеет стандартизированное отношение сторон, равное 16:9. Обозначая за x неизвестный коэффициент, получаем длины сторон монитора:
Теперь применяем формулу для определения диагонали, получаем:
35 2 = x 2 *(16 2 +9 2 ) =>
Тогда стороны монитора и площадь его равны:
Отметим еще раз, что определить по значению диагонали площадь можно только в том случае, если известно отношение сторон прямоугольника.
Видео:Задача, которую боятсяСкачать
Четырехугольник
Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать
Определение четырехугольника
Определение 1. Четырехугольник − это замкнутая ломаная линия, состоящая из четырех звеньев.
Определение 2. Четырехугольник − геометрическая фигура (многоугольник), состоящая из четырех точек, никакие три из которых не лежат на одной прямой и последовательно соединенные четырьмя отрезками, называемыми сторонами четырехугольника.
Объединение четырехугольника и ограниченной им части плоскости также называют четырехугольником.
Любой четырехугольник разделяет плоскость на две части, одна из которых называется внутренней областью четырехугольника, а другая внешней областью четырехугольника.
Видео:Четырёхугольник, прямоугольник, квадрат // Математика 1 классСкачать
Виды четырехугольников
Четырехугольники бывают следующих видов:
- Параллелограмм − четырехугольник, у которого противоположные стороны попарно вправны и параллельны (Рис.1).
- Трапеция − четырехугольник, у которого две противоположные стороны параллельны (Рис.2).
- Прямоугольник − четырехугольник, у которого все углы прямые (Рис.3).
- Ромб − четырехугольник, у которого все стороны равны (Рис.4).
- Квадрат − четырехугольник, у которого все стороны равны и все углы прямые (Рис.5).
- Дельтоид − четырехугольник, у которого есть две пары равных смежных сторон (Рис.6, Рис.6.1).
- Антипараллелограмм (или контрпараллелограмм)− четырехугольник, у которого противоположные стороны равны но не параллельны (с самопересечением) (Рис.7).
Видео:Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)Скачать
Обозначение четырехугольника
Обозначают четырехугольник буквами, стоящих при его вершинах. Называют четырехугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, четырехугольник на рисунке 8 называют ( small A_1A_2A_3A_4 ) или ( small A_4A_3A_2A_1 ) (Рис.8).
Видео:Математика 2 класс (Урок№36 - Прямоугольник.)Скачать
Соседние вершины четырехугольника
Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.
На рисунке 8 вершины ( small A_2 ) и ( small A_3 ) являются соседними, так как они являются концами стороны ( small A_2A_3. )
Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
Смежные стороны четырехугольника
Стороны четырехугольника называются смежными, если они имеют общую вершину.
На рисунке 8 стороны ( small A_2A_3 ) и ( small A_3A_4 ) являются смежными, так как они имеют общую вершину ( small A_3. )
Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать
Простой четырехугольник. Самопересекающийся четырехугольник
Четырехугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).
На рисунках 9 и 9.1 изображены простые четырехугольники так как стороны четырехугольников не имеют самопересечений. А на рисунке 10 четырехугольник не является простым, так как стороны ( small A_1A_4 ) и ( small A_2A_3 ) пересекаются. Такой четырехугольник называется самопересекающийся.
Видео:Четырехугольники. 5 класс.Скачать
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.
На рисунке 11 четырехугольник лежит по одну сторону от прямых ( small m, n, p, q, ) проходящих через стороны четырехугольника. Поэтому такой четырехугольник выпуклый.
На рисунке 12 прямая ( small m) делит четырехугольник на две части, т.е. четырехугольник не лежит по одну сторону от прямой ( small m). Следовательно, этот четырехугольник не является выпуклым.
Видео:№424. Докажите, что если не все углы выпуклого четырехугольника равны друг другуСкачать
Правильный четырехугольник
Простой четырехугольник называется правильным, если все его стороны равны и все углы равны. Квадрат является правильным четырехугольником, так как все его стороны равны и все его углы равны 90°. Среди четырехугольников других правильных четырехугольников не существует.
На рисунке 5 изображен правильный четырехугольник (квадрат), так как у данного четырехугольника все стороны равны и все углы равны. Четырехугольник (ромб) на на рисунке 4 не является правильным, так как все стороны четырехугольника равны, но все его углы не равны друг другу. Прямоугольник также не является правильным четырехугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.
Периметр четырехугольника
Сумма всех сторон четырехугольника называется периметром четырехугольника. Для четырехугольника ( small A_1A_2A_3A_4 ) периметр вычисляется из формулы:
( small P=A_1A_2+A_2A_3+A_3A_4+A_4A_1 ) |
Угол четырехугольника
Углом (внутренним углом) четырехугольника при данной вершине называется угол между двумя сторонами четырехугольника, сходящимися к этой вершине. Если четырехугольник выпуклый, то все углы четырехугольника меньше 180°. Если же четырехугольник невыпуклый, то он имеет внутренний угол больше 180° (угол ( small alpha ) на рисунке 13).
Внешний угол четырехугольника
Внешним углом четырехугольника при данной вершине называется угол смежный внутреннему углу четырехугольника при данной вершине.
На рисунке 14 угол α является внутренним углом четырехугольника при вершине ( small A_4, ) а углы β и γ являются внешними углами четырехугольника при этой же вершине. Очевидно, что при каждой вершине есть два внешних угла.
Диагональ четырехугольника
Диагоналями называют отрезки, соединяющие две несоседние вершины четырехугольника.
Очевидно, что у четырехугольника две диагонали.
Сумма углов четырехугольника
Для любого простого четырехугольника по крайней мере один диагональ делит его на два треугольника. Сумма углов треугольника равна 180°. Поэтому сумма углов простого четырехугольника равна 360°.
Сумма внешних углов четырехугольника
Пусть задан четырехугольник ( small A_1A_2A_3A_4 .) Внешний угол при вершине ( small A_1) равен ( small 180°-angle A_1.) Аналогично, внешние углы при вершинах ( small A_2, A_3, A_4 ) равны ( small 180°-angle A_2, ) ( small 180°-angle A_3, ) ( small 180°-angle A_4, ) соответственно. Тогда сумма внешних углов четырехугольника равна:
( small 180°-angle A_1 ) ( small +180°-angle A_2 ) ( small +180°-angle A_3 ) ( small +180°-angle A_4 )( small =720°-(angle A_1+angle A_2+angle A_3+angle A_4 )) ( small =720°-360°=360°. ) |
Задача 1. Доказать, что длина любой стороны четырехугольника меньше суммы длин трех его сторон.
Решение. Рассмотрим произвольный четырехугольник ABCD (Рис.15). Покажем, например, что AB