Замкнутая ломаная линия вектора

Ломаная линия

Ломаная линия — это геометрическая фигура, состоящая из последовательно соединённых отрезков, в которой конец одного отрезка является началом следующего. При этом соседние (имеющие общую точку) отрезки не должны лежать на одной прямой.

Отрезки, из которых состоит ломаная, называются её звеньями, а концы этих отрезков — вершинами ломаной.

Построим ломаную из четырёх отрезков:

Замкнутая ломаная линия вектора

Отрезки AB, BC, CD и DE — это звенья ломаной. Точки A, B, C, D и Eвершины ломаной. Обозначение ломаной линии составляют из букв, стоящих при её вершинах, называя их по порядку. Например, говорят или пишут: ломаная ABCDE или ломаная EDCBA .

Видео:ЛоманаяСкачать

Ломаная

Замкнутая и незамкнутая ломаная

Незамкнутая ломаная — это ломаная линия, концы которой не совпадают друг с другом:

Замкнутая ломаная линия вектора

незамкнутая ломаная ABCD.

Замкнутая ломаная — это ломаная линия, концы которой совпадают друг с другом:

Замкнутая ломаная линия вектора

замкнутая ломаная ABC.

Видео:Ломаная.Скачать

Ломаная.

Самопересекающаяся ломаная

Замкнутые и незамкнутые ломаные линии могут быть самопересекающимися. Самопересекающаяся ломаная — это ломаная линия, звенья которой пересекают другу друга в одной или нескольких точках. Например:

Замкнутая ломаная линия вектора

точки F, T, Kточки самопересечения, то есть точки, в которых ломаная пересекает сама себя.

Замкнутая ломаная линия вектора

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Длина ломаной

Длина ломаной — это сумма длин всех её звеньев. Длина замкнутой ломаной, не имеющий самопересечений, то есть длина многоугольника, называется периметром.

Пример 1. Найти длину ломаной из 3 звеньев.

Замкнутая ломаная линия вектора

Решение: Для нахождения длины ломаной, состоящей из трёх звеньев, надо сложить длины всех её звеньев. Длина ломаной ABCD будет равна:

AB + BC + CD = 4 см + 3 см + 2 см = 9 см.

Ответ: Длина ломаной ABCD равна 9 см.

Пример 2. Найти длину замкнутой ломаной.

Замкнутая ломаная линия вектора

Решение: Найдём периметр замкнутой ломаной, сложив длины всех её звеньев:

AB + BC + CD + DA =
3 см + 5 см + 4 см + 5 см = 17 см.

Видео:3. Замкнутая ломаная. МногоугольникиСкачать

3. Замкнутая ломаная. Многоугольники

Замкнутые самопересекающиеся ломаные

Александр Блинков, Александр Грибалко
«Квантик» №11, 2019

Замкнутая ломаная линия вектора

В этой статье пойдёт речь о ломаных линиях на плоскости. Для того чтобы изобразить ломаную, достаточно выбрать несколько точек (не меньше трёх), занумеровать их в каком-нибудь порядке, после чего последовательно соединить отрезками точки с соседними номерами. Выбранные точки называются вершинами ломаной, а отрезки — её звеньями (на рисунке 1 — трёхзвенная ломаная с четырьмя вершинами).

Если хотя бы два звена ломаной пересекаются (в своих внутренних точках), её называют самопересекающейся (на рисунке 2 — четырёхзвенная самопересекающаяся ломаная).

И наконец, если первая и последняя вершины ломаной совпадают, её называют замкнутой. В такой ломаной количество вершин совпадает с количеством звеньев (на рисунке 3 изображена пятизвенная замкнутая ломаная).

Замкнутая ломаная линия вектора

Нас будут интересовать замкнутые самопересекающиеся ломаные.

Начнём с задачи, предложенной А. Пешниным (её частные случаи были использованы на XXV турнире математических боёв имени А. П. Савина).

Задача 1

Сколько вершин может быть у замкнутой ломаной, которая каждое своё звено пересекает ровно два раза?

Очевидно, что трёхзвенная замкнутая ломаная не может быть самопересекающейся. Замкнутая ломаная с четырьмя вершинами также не удовлетворяет условию задачи, так как соседние звенья пересечься не могут, а для каждого звена есть только одно не соседнее. Пример пятизвенной ломаной хорошо известен — это пятиконечная звезда (см. рис. 4, а, где вершины ломаной делят окружность на пять равных частей). Идея использовать окружность тут не обязательна, но удобна и пригодится в дальнейшем.

Замкнутая ломаная линия вектора

Замкнутая ломаная линия вектора

Этот пример подсказывает, что аналогичным образом можно построить любую ломаную, удовлетворяющую условию, с нечётным количеством звеньев, большим трёх. Достаточно поставить на окружности требуемое количество вершин и последовательно соединить их через одну. Например, на рисунке 4, б — искомая ломаная с девятью звеньями.

Осталось разобраться с ломаными, у которых чётное количество звеньев, начиная с шести.

Искомой шестизвенной ломаной не существует, но доказывать это мы умеем только перебором всех случаев, который не очень интересен.

Для восьми звеньев существует красивый пример (рис. 5, а). Аналогично можно построить ломаную, удовлетворяющую условию, с любым чётным количеством звеньев, большим восьми. Как это делается, понятно из примеров для десяти и двенадцати звеньев, показанных на рисунках 5, б и 5, в. Сначала мы отмечаем на окружности точки, которых на две меньше, чем нужно, и соединяем их через одну. Так как точек чётное количество, получатся две замкнутые ломаные, все звенья которых пересекаются с другой ломаной в двух точках. После этого удаляем по одному звену в каждой ломаной и соединяем ломаные в одну, используя ещё две вершины, расположенные внутри окружности.

Замкнутая ломаная линия вектора

Есть и более простой способ. Воспользуемся тем, что любое чётное число, большее восьми, можно представить в виде суммы двух нечётных слагаемых, каждое из которых не меньше пяти.

Покажем, например, как построить двенадцатизвенную ломаную, удовлетворяющую условию. Изобразим две окружности, которые касаются друг друга внешним образом в некоторой точке. В одной из окружностей построим уже указанным способом пятизвенную ломаную, а в другой — семизвенную, причём точка касания должна быть их общей вершиной. А теперь эту точку «раздвоим» (рис. 6, результат раздвоения — вершины с номерами 1 и 6).

Замкнутая ломаная линия вектора

Аналогично строятся все искомые ломаные, у которых количество звеньев чётное и больше восьми.

Возникает вопрос: почему мы начали с двух точек пересечения звеньев, а не с одной, что, казалось бы, более естественно?

Дело в том, что такой порядок более логичен, так как решение следующей задачи будет во многом опираться на решение рассмотренной.

Задача 2

Сколько вершин может быть у замкнутой ломаной, которая каждое своё звено пересекает ровно один раз?

Сразу заметим, что в этом случае звенья ломаной должны разбиваться на непересекающиеся пары, поэтому у искомых ломаных — чётное количество звеньев. Легко проверить, что замкнутая ломаная из четырёх звеньев условию не удовлетворяет.

Пример искомой ломаной из шести звеньев можно построить, исходя из следующих соображений: помимо того, что не могут пересекаться соседние звенья, не могут пересекаться и звенья, стоящие через одно. Действительно, в этом случае образуется треугольник (рис. 7, а), в который можно будет только «войти», если пересечь среднее звено, но нельзя будет «выйти». Поэтому надо пересекать первое звено с четвёртым, второе — с пятым, а третье — с шестым (рис. 7, б).

Замкнутая ломаная линия вектора

Замкнутая ломаная линия вектора

Пример искомой ломаной из восьми звеньев читателю предлагается построить самостоятельно (см. задачи в конце статьи). А вот пример десятизвенной ломаной можно получить, обратившись к задаче 1. Действительно, рассмотрим пример замкнутой пятизвенной ломаной, которая каждое своё звено пересекает два раза (рис. 4). «Сломаем» каждое звено между двумя точками пересечения и получим искомый пример (рис. 8). Аналогично, рассмотрев семизвенную ломаную из задачи 1, можно получить решение для ломаной с четырнадцатью звеньями; пример восьмизвенной ломаной из задачи 1 помогает получить решение для ломаной из шестнадцати звеньев, и т. д.

Этот приём не годится только для построения двенадцатизвенной ломаной, так как нет шестизвенной ломаной, которая каждое своё звено пересекает два раза. Но в этом случае можно использовать другую идею решения задачи 1: «раздвоение». Построим две ломаные из рис. 7, б с общей вершиной и «раздвоим» её (рис. 9, результат раздвоения — вершины с номерами 6 и 12). Понятно, что идея «раздвоения» вершин более универсальна. В том числе и потому, что позволяет комбинировать ломаные с разным количеством звеньев.

Замкнутая ломаная линия вектора

Надеемся, что идеи и приёмы, описанные выше, помогут при решении других задач.

Упражнения и задачи для самостоятельного решения

1. Может ли прямая, не содержащая вершин замкнутой девятизвенной ломаной, пересечь каждое её звено?

2. (В. Произволов) Замкнутая ломаная такова, что каждые два её не соседних звена пересекаются. Докажите, что у этой ломаной нечётное количество звеньев.

3. Существует ли пятнадцатизвенная ломаная, пересекающая каждое своё звено ровно три раза?

4. Постройте восьмизвенную замкнутую ломаную, которая каждое своё звено пересекает один раз.

5. (Д. Калинин, вариация фольклора) Маша нарисовала замкнутую семизвенную ломаную. Для каждого звена она записала, со сколькими звеньями оно пересекается во внутренних точках. Могла ли она записать в каком-то порядке числа 1, 2, 3, 4, 3, 2, 1?

6. Какое наибольшее количество точек самопересечения может иметь замкнутая семизвенная ломаная?

7. (Н. Васильев) Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.

  1. Нарисуйте ломаную, которая имеет наибольшее возможное количество точек самопересечения.
  2. Докажите, что нельзя нарисовать ломаную с большим количеством самопересечений.

Видео:ЛОМАНАЯ. Геометрия 7 классСкачать

ЛОМАНАЯ. Геометрия 7 класс

Как выглядит замкнутая ломаная линия

Ломаной линией в геометрии принято называть геометрическую фигуру, которая состоит из двух или нескольких отрезков. Конец одного отрезка является началом другого. Обязательное условие, которому подчиняется любая ломаная, — соседние отрезки не должны располагаться на одной прямой.

Эти геометрические фигуры находят самое широкое применение в разных областях науки и практики:

  1. Картография — для построения изображений улиц и схем маршрутов.
  2. Архитектура — очертания зданий и строений.
  3. Ландшафтный дизайн — декоративное оформление и расположение тропинок.
  4. Химия — молекулярная структура сложных полимерных соединений.
  5. Медицина — мониторы для контроля функционального состояния органов и систем.

Видео:Поток векторного поля через замкнутую поверхностьСкачать

Поток векторного поля через замкнутую поверхность

Типы ломаных линий

Рассматриваемые геометрические фигуры могут быть выстроены самыми разнообразными способами — они могут быть незамкнутыми и замкнутыми, пересекающимися и непересекающимися.

Замкнутая ломаная соответствует определенной геометрической фигуре — многоугольнику.

Если отрезки одной такой фигуры имеют точки пересечения друг с другом — эта линия называется самопересекающейся.

Всего существует 4 типа подобных линий по своей структуре:

  1. Замкнутые, которые не имеют пересечений.
  2. Незамкнутые, которые не имеют пересечений.
  3. Незамкнутые самопересекающиеся.
  4. Замкнутые, имеющие самопересечения.

Разновидностью такой геометрической фигуры может считаться зигзаг, у которого последовательные отрезки образуют прямой угол и параллельны друг другу через один. Зигзагами широко пользуются в обиходе — в портновском мастерстве, декоративном искусстве, оформлении предметов обихода.

Замкнутая ломаная линия вектора

Видео:1 класс Математика Кривая. Замкнутые и незамкнутые линии. Прямая. Отрезок. ЛоманаяСкачать

1 класс Математика Кривая. Замкнутые и незамкнутые линии. Прямая. Отрезок. Ломаная

Особенности замкнутых линий

Рассмотрим подробнее составляющие части этой геометрической фигуры.

  1. Один отрезок из тех, что составляют описываемую фигуру, называется ее звеном. Ломаной может считаться такая линия, которую составляют как минимум два отрезка — звена. Если звено одно — это просто единичный отрезок.
  2. Существует также понятие вершины ломаной. Этим термином принято называть точку, в которой соединяются концы двух звеньев. Такие точки в геометрии принято обозначать с помощью заглавных латинских букв. Сама ломаная называется сочетанием обозначений этих вершин. Например, названием такой линии может послужить сочетание ABCDEF.
  3. Если концы крайних звеньев этого геометрического объекта соединяются в одной точке, такая линия называется замкнутой.
  4. Ломаная линия может пересекать саму себя.
  5. Конечные вершины такой фигуры в геометрии принято называть черными точками.

Как уже было сказано выше, эта разновидность линий может иметь самопересечения. Наиболее популярным примером замкнутой линии, имеющей самопересечения, является пятиконечная звезда.

Замкнутая ломаная линия вектора

Видео:Ломаная линия. Математика. 1 класс.Скачать

Ломаная линия. Математика. 1 класс.

Многоугольник как разновидность замкнутой ломаной

Разновидностью описываемой геометрической фигуры является многоугольник. Точками в многоугольнике являются его вершины, а отрезки называются сторонами.

  1. Если вершины принадлежат одной и той же стороне многоугольника — они носят название смежных.
  2. Если отрезок соединяет две любых вершины, не являющиеся смежными, он называется диагональю.
  3. Если у многоугольника имеется n вершин — он называется n-угольником. У такой фигуры имеется количество сторон, равное n.
  4. Такая ломаная делит плоскость на 2 части — внешнюю и внутреннюю.
  5. Если точки многоугольника лежат по одну сторону от прямой и проходят через 2 соседние вершины — его принято называть выпуклым.
  6. Угол выпуклого многоугольника при данной вершине — это угол, который образован двумя его сторонами, для которых эта вершина является общей.
  7. Внешний угол выпуклого многоугольника при определенной вершине — это угол, смежный с внутренним углом многоугольника при этой же самой вершине.

Замкнутая ломаная линия вектора

Примерами многоугольников являются четырехугольники, треугольники, пятиугольники. Рассмотрим подробнее отличительные черты этих фигур.

Треугольник — это геометрическая фигура, которая состоит из трех точек, расположенных не на одной прямой. Эти точки попарно соединяются между собой отрезками.

Четырехугольником в геометрии называется фигура, которая имеет четыре угла и четыре стороны. Четырехугольники встречаются самые разнообразные — это могут быть трапеции, квадраты, параллелограммы, ромбы.

У трапеции параллельны две стороны, которые называются основаниями. Остальные две стороны не параллельны. У параллелограмма между собой параллельны две противоположные стороны.

Отличительной чертой прямоугольника является то, что все его углы прямые. У квадрата являются равными все четыре стороны. Кроме того, все углы у квадрата являются прямыми.

Если у многоугольника все стороны и углы равны, он называется правильным. Такой многоугольник всегда будет выпуклым.

📹 Видео

Математика 1 класс (Урок№10 - Точка. Кривая линия. Прямая линия. Отрезок. Луч. Ломаная линия.)Скачать

Математика 1 класс (Урок№10 - Точка. Кривая линия. Прямая линия. Отрезок. Луч. Ломаная линия.)

Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Самопересекающиеся вектора в ArtCam. Как их победить?Скачать

Самопересекающиеся вектора в ArtCam. Как их победить?

Ломаная линия Звено ломаной. Математика 1 классСкачать

Ломаная линия  Звено ломаной. Математика 1 класс

1 класс. Математика. Кривая линия. Замкнутые и незамкнутые линии. 12.05.2020Скачать

1 класс. Математика. Кривая линия. Замкнутые и незамкнутые линии.  12.05.2020

Математика 1 класс / Ломаная линия. Звено ломаной вершины / ТЕЛЕУРОК 19.10.20Скачать

Математика 1 класс / Ломаная линия. Звено ломаной вершины / ТЕЛЕУРОК 19.10.20

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/Скачать

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Математика 5 класс. ЛоманаяСкачать

Математика 5 класс. Ломаная
Поделиться или сохранить к себе: