Вектор — это одномерный массив чисел. MATLAB позволяет создавать два типа векторов —
- Векторы строк
- Векторы столбцов
- Строки Векторы
- Векторы столбцов
- Ссылка на элементы вектора
- Вывод вектора на экран matlab
- Содержание
- 1. Базовые сведения
- 1.1. Рабочая среда MatLab
- 1.2. Простейшие вычисления
- 1.3. Эхо команд
- 1.4. Сохранение рабочей среды. MAT файлы
- 1.5. Журнал
- 1.6. Система помощи
- 2. Матрицы
- 2.1. Скаляры, векторы и матрицы
- 2.2. Доступ к элементам
- 2.3. Основные матричные операции
- 2.4. Создание матриц специального вида
- 2.5. Матричные вычисления
- 3. Интегрирование MatLab и Excel
- 3.1. Конфигурирование Excel
- 3.2. Обмен данными между MatLab и Excel
- 4. Программирование
- 4.1. М-файлы
- 4.2. Файл-программа
- 4.3. Файл-функция
- 4.4 Создание графика
- 4.5 Печать графиков
- 5. Примеры программ
- 5.1. Центрирование и шкалирование
- 5.2. SVD/PCA
- 5.3 PCA/NIPALS
- 5.4 PLS1
- 5.5 PLS2
- Заключение
Видео:Работа с массивами. Вектор столбцы и вектор строки 2. Урок 8Скачать
Строки Векторы
Векторы строк создаются путем заключения набора элементов в квадратных скобках с использованием пробела или запятой для разделения элементов.
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Видео:Работа с массивами. Вектор столбцы и вектор строки 1. Урок 7Скачать
Векторы столбцов
Векторы столбцов создаются заключением набора элементов в квадратные скобки с использованием точки с запятой для разделения элементов.
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Видео:Matlab создание вектора данныхСкачать
Ссылка на элементы вектора
Вы можете ссылаться на один или несколько элементов вектора несколькими способами. I- й компонент вектора v обозначается как v (i). Например —
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Когда вы ссылаетесь на вектор с двоеточием, например, v (:), в нем отображаются все компоненты вектора.
Видео:Работа с массивами. Обращение к элементам вектора. Урок 9Скачать
Вывод вектора на экран matlab
Выше были рассмотрены операции с простыми переменными. Однако с их помощью сложно описывать сложные данные, такие как случайный сигнал, поступающий на вход фильтра или хранить кадр изображения и т.п. Поэтому в языках высокого уровня предусмотрена возможность хранить значения в виде массивов. В MatLab эту роль выполняют векторы и матрицы.
Ниже показан пример задания вектора с именем a, и содержащий значения 1, 2, 3, 4:
a = [1 2 3 4]; % вектор-строка
Для доступа к тому или иному элементу вектора используется следующая конструкция языка:
disp( a(1) ); % отображение значения 1-го элемента вектора
disp( a(2) ); % отображение значения 2-го элемента вектора
disp( a(3) ); % отображение значения 3-го элемента вектора
disp( a(4) ); % отображение значения 4-го элемента вектора
т.е. нужно указать имя вектора и в круглых скобках написать номер индекса элемента, с которым предполагается работать. Например, для изменения значения 2-го элемента массива на 10 достаточно записать
a(2) = 10; % изменение значения 2-го элемента на 10
Часто возникает необходимость определения общего числа элементов в векторе, т.е. определения его размера. Это можно сделать, воспользовавшись функцией length() следующим образом:
N = length(a); % (N=4) число элементов массива а
Если требуется задать вектор-столбец, то это можно сделать так
a = [1; 2; 3; 4]; % вектор-столбец
b = [1 2 3 4]’; % вектор-столбец
при этом доступ к элементам векторов осуществляется также как и для векторов-строк.
Следует отметить, что векторы можно составлять не только из отдельных чисел или переменных, но и из векторов. Например, следующий фрагмент программы показывает, как можно создавать один вектор на основе другого:
a = [1 2 3 4]; % начальный вектор a = [1 2 3 4]
b = [a 5 6]; % второй вектор b = [1 2 3 4 5 6]
Здесь вектор b состоит из шести элементов и создан на основе вектора а. Используя этот прием, можно осуществлять увеличение размера векторов в процессе работы программы:
a = [a 5]; % увеличение вектора а на один элемент
Недостатком описанного способа задания (инициализации) векторов является сложность определения векторов больших размеров, состоящих, например, из 100 или 1000 элементов. Чтобы решить данную задачу, в MatLab существуют функции инициализации векторов нулями, единицами или случайными значениями:
a1 = zeros(1, 100); % вектор-строка, 100 элементов с
% нулевыми значениями
a2 = zeros(100, 1); % вектор-столбец, 100 элементов с
% нулевыми значениями
a3 = ones(1, 1000); % вектор-строка, 1000 элементов с
% единичными значениями
a4 = ones(1000, 1); % вектор-столбец, 1000 элементов с
% единичными значениями
a5 = rand(1000, 1); % вектор-столбец, 1000 элементов со
% случайными значениями
Матрицы в MatLab задаются аналогично векторам с той лишь разницей, что указываются обе размерности. Приведем пример инициализации единичной матрицы размером 3х3:
E = [1 0 0; 0 1 0; 0 01]; % единичная матрица 3х3
E = [1 0 0
0 1 0
0 0 1]; % единичная матрица 3х3
Аналогичным образом можно задавать любые другие матрицы, а также использовать приведенные выше функции zeros(), ones() и rand(), например:
A1 = zeros(10,10); % нулевая матрица 10х10 элементов
A2 = zeros(10); % нулевая матрица 10х10 элементов
A3 = ones(5); % матрица 5х5, состоящая из единиц
A4 = rand(100); % матрица 100х100, из случайных чисел
Для доступа к элементам матрицы применяется такой же синтаксис как и для векторов, но с указанием строки и столбца где находится требуемый элемент:
A = [1 2 3;4 5 6;7 8 9]; % матрица 3х3
disp( A(2,1) ); % вывод на экран элемента, стоящего во
% второй строке первого столбца, т.е. 4
disp( A(1,2) ); % вывод на экран элемента, стоящего в
% первой строке второго столбца, т.е. 2
Также возможны операции выделения указанной части матрицы, например:
B1 = A(:,1); % B1 = [1; 4; 7] – выделение первого столбца
B2 = A(2,:); % B2 = [1 2 3] – выделение первой строки
B3 = A(1:2,2:3); % B3 = [2 3; 5 6] – выделение первых двух
% строк и 2-го и 3-го столбцов матрицы А.
Размерность любой матрицы или вектора в MatLab можно определить с помощью функции size(), которая возвращает число строк и столбцов переменной, указанной в качестве аргумента:
a = 5; % переменная а
A = [1 2 3]; % вектор-строка
B = [1 2 3; 4 5 6]; % матрица 2х3
size(a) % 1х1
size(A) % 1х3
size(B) % 2х3
© 2022 Научная библиотека
Копирование информации со страницы разрешается только с указанием ссылки на данный сайт
Видео:MATLAB 04 Массивы и матрицыСкачать
Содержание
В этом пособии рассказывается о применении пакета MatLab для анализа многомерных данных. Этот текст не является учебником по MatLab. В нем приведены только базовые сведения о работе в этой среде, необходимые для реализации основных алгоритмов. Более подробное изложение можно найти здесь.
В пособии интенсивно используются понятия и методы матричной алгебры – вектор, матрица, и т.п. Читателям, которые плохо знакомы с этим аппаратом, рекомендуется изучить, или, хотя бы просмотреть, пособие «Матрицы и векторы».
Для практического воплощения хемометрических методов используются как специализированные пакеты программ (например, the Unsrambler или SIMCA), так и статистические пакеты общего назначения (например, SPSS или Statistica). Среди средств общего назначения, используемых в хемометрике, особое место занимает пакет MatLab. Его популярность необычайно высока. Это объясняется тем, что MatLab является мощным и универсальным обработки многомерных данных. Сама структура пакета делает его удобным средством для проведения матричных вычислений. Спектр проблем, исследование которых может, осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, нейронные сети и многие другие. MatLab — это язык высокого уровня, имеющий открытый код, что дает возможность опытным пользователям разбираться в запрограммированных алгоритмах. Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. За много лет использования MatLab создано огромное количество функций и ToolBox (пакетов специализированных средств). Самым популярным является пакет PLS ToolBox компании Eigenvector Research, Inc.
Многие книги и статьи содержат MatLab коды, позволяющие читателю сразу применить описываемые методы на практике. MatLab прекрасно интегрируется с Microsoft Word и Excel. Российское хемометрическое общество издало учебное пособие, являющееся полезным введением в хемометрические приложения MatLab.
Видео:2-4 MATLAB - Матрицы и индексацияСкачать
1. Базовые сведения
Видео:Символьные переменные и функции. Матрицы и векторы. Урок 142Скачать
1.1. Рабочая среда MatLab
Чтобы запустить программу дважды щелкните на иконку . Перед Вами откроется рабочая среда, изображенная на рисунке.
Рабочая среда MatLab 6.х немного отличается от рабочей среды предыдущих версий, она имеет более удобный интерфейс для доступа ко многим вспомогательным элементам
Рабочая среда MatLab 6.х содержит следующие элементы:
панель инструментов с кнопками и раскрывающимся списком;
окно с вкладками Launch Pad и Workspace, из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;
окно с вкладками Command History и Current Directory, предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;
командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;
Если в рабочей среде MatLab 6.х отсутствуют некоторые окна, приведенные на рисунке, то следует в меню View выбрать соответствующие пункты: Command Window, Command History , Current Directory , Workspase , Launch Pad .
Команды следует набирать в командном окне. Символ » , обозначающий приглашение к вводу командной строки, набирать не нужно. Для просмотра рабочей области удобно использовать полосы скроллинга или клавиши Home , End , для перемещения влево или вправо, и PageUp , PageDown для перемещения вверх или вниз. Если вдруг после перемещения по рабочей области командного окна пропала командная строка с мигающим курсором, просто нажмите Enter .
Важно помнить, что набор любой команды или выражения должен заканчиваться нажатием на Enter , для того, чтобы программа MatLab выполнила эту команду или вычислила выражение.
Видео:MatLab Операторы ввода, вывода и присвоенияСкачать
1.2. Простейшие вычисления
Наберите в командной строке 1+2 и нажмите Enter . В результате в командном окне MatLab отображается следующее:
Рис. 2 Графическое представление метода главных компонент
Что сделала программа MatLab? Сначала она вычислила сумму 1+2 , затем записала результат в специальную переменную ans и вывела ее значение, равное 3 , в командное окно. Ниже ответа расположена командная строка с мигающим курсором, обозначающая, что MatLab готов к дальнейшим вычислениям. Можно набирать в командной строке новые выражения и находить их значения. Если требуется продолжить работу с предыдущим выражением, например, вычислить (1+2)/4.5 , то проще всего воспользоваться уже имеющимся результатом, который хранится в переменной ans . Наберите ans/4.5 (при вводе десятичных дробей используется точка) и нажмите Enter, получается
Рис. 3 Графическое представление метода главных компонент
Видео:Как оформить график в MatLab.Скачать
1.3. Эхо команд
Выполнение каждой команды в MatLab сопровождается эхом. В приведенном выше примере — это ответ ans = 0.6667 . Часто эхо затрудняет восприятие работы программы и тогда его можно отключить. Для этого команда должна завершаться символом точка с запятой. Например
Рис. 4 Пример ввода функции ScoresPCA
Видео:Поэлементные операции с векторами. Работа с массивами. Урок 11Скачать
1.4. Сохранение рабочей среды. MAT файлы
Самый простой способ сохранить все значения переменных — использовать в меню File пункт Save Workspase As. При этом появляется диалоговое окно Save Workspase Variables , в котором следует указать каталог и имя файла. По умолчанию предлагается сохранить файл в подкаталоге work основного каталога MatLab. Программа сохранит результаты работы в файле с расширением mat . Теперь можно закрыть MatLab. В следующем сеансе работы для восстановления значений переменных следует открыть этот сохраненный файл при помощи подпункта Open меню File . Теперь все переменные, определенные в прошлом сеансе, опять стали доступными. Их можно использовать во вновь вводимых командах.
Видео:MATLAB 07 Интерактивное построение графиковСкачать
1.5. Журнал
В MatLab имеется возможность записывать исполняемые команды и результаты в текстовый файл (вести журнал работы), который потом можно прочитать или распечатать из текстового редактора. Для начала ведения журнала служит команда diary . В качестве аргумента команды diary следует задать имя файла, в котором будет храниться журнал работы. Набираемые далее команды и результаты их исполнения будут записываться я в этот файл, например последовательность команд
производит следующие действия:
открывает журнал в файле exampl-1.txt ;
сохраняет все переменные в MAT файле work-1.mat ;
сохраняет журнал в файле exampl-1.txt в подкаталоге work корневого каталога MatLab и закрывает MatLab;
Посмотрите содержимое файла exampl-1.txt в каком-нибудь текстовом редакторе. В файле окажется следующий текст:
a1=3; a2=2.5; a3=a1+a2 |
save work-1
quit
Видео:MatLab. Урок 4. Форматы данных, функции времени, функции сохранения и загрузки результатовСкачать
1.6. Система помощи
Окно справки MatLab появляется после выбора опции Help Window в меню Help или нажатием кнопки вопроса на панели инструментов. Эта же операция может быть выполнена при наборе команды helpwin . Для вывода окна справки по отдельным разделам, наберите helpwin topic . Окно справки предоставляет Вам такую же информацию, как и команда help , но оконный интерфейс обеспечивает более удобную связь с другими разделами справки. Используя адрес Web-страницы фирмы Math Works, вы можете выйти на сервер фирмы и получить самую последнюю информацию по интересующим вас вопросам. Вы можете ознакомиться с новыми программными продуктами или найти ответ на возникшие проблемы на странице технической поддержки.
Видео:Нейрографика не работает?| Нейрографика с Оксаной АвдеевойСкачать
2. Матрицы
Видео:MatlabTutor - 2. Работа с массивами. Матрицы, обращение к элементам матриц и вектора, отображения.Скачать
2.1. Скаляры, векторы и матрицы
В MatLab можно использовать скаляры, векторы и матрицы. Для ввода скаляра достаточно приписать его значение какой-то переменной, например
Заметим, что MatLab различает заглавные и прописные буквы, так что p и P — это разные переменные. Для ввода массивов (векторов или матриц) их элементы заключают в квадратные скобки. Так для ввода вектора-строки размером 1×3, используется следующая команда, в которой элементы строки отделяются пробелами или запятыми.
При вводе вектора-столбца элементы разделяют точкой с запятой. Например,
Вводить небольшие по размеру матрицы удобно прямо из командной строки. При вводе матрицу можно рассматривать как вектор-столбец, каждый элемент которого является вектором-строкой.
или матрицу можно трактовать как вектор строку, каждый элемент которой является вектором-столбцом.
Видео:Умножение векторов. Работа с массивами. Урок 14Скачать
2.2. Доступ к элементам
Доступ к элементам матриц осуществляется при помощи двух индексов — номеров строки и столбца, заключенных в круглые скобки, например команда B(2,3) выдаст элемент второй строки и третьего столбца матрицы B . Для выделения из матрицы столбца или строки следует в качестве одного из индексов использовать номер столбца или строки матрицы, а другой индекс заменить двоеточием. Например, запишем вторую строку матрицы A в вектор z
Также можно осуществлять выделение блоков матриц при помощи двоеточия. Например, выделим из матрицы P блок отмеченный цветом
Если необходимо посмотреть переменные рабочей среды, в командной строке необходимо набрать команду whos .
Видно, что в рабочей среде содержатся один скаляр ( p ), четыре матрицы ( A, B, P, P1 ) и вектор-строка ( z ).
Видео:MatLab. Урок 1. Основы программирования.Скачать
2.3. Основные матричные операции
При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус
а умножение — знаком звездочка * . Введем матрицу размером 3×2
Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^
Проверьте полученный результат, умножив матрицу Р саму на себя.
Видео:Инструменты LDRA для верификации ПО: Создание тестовых векторов в MATLABСкачать
2.4. Создание матриц специального вида
Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros
Единичная матрица создается при помощи функции eye
Матрица, состоящая из единиц, образуется в результате вызова функции ones
MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn — матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.
Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.
Видео:MatLab. 3.2. Двумерные массивы чисел: матрицы и векторыСкачать
2.5. Матричные вычисления
MatLab содержит множество различных функций для работы с матрицами. Так, например, транспонирование матрицы производится при помощи апострофа ‘
Нахождение обратной матрицы проводится с помощью функции inv для квадратных матриц
Псевдообратную матрицу можно найти с помощью функции pinv .
Более подробно про обработку матричных данных можно узнать, если вывести список всех встроенных функций обработки данных командой help datafun , а затем посмотреть информацию о нужной функции, например help max .
Видео:Работа со сплайнами. Построение сплайна для вектор функции. Урок 152Скачать
3. Интегрирование MatLab и Excel
Интегрирование MatLab и Excel позволяет пользователю Excel обращаться к многочисленным функциям MatLab для обработки данных, различных вычислений и визуализации результата. Надстройка excllink.xla реализует данное расширение возможностей Excel. Для связи MatLab и Excel определены специальные функции.
3.1. Конфигурирование Excel
Перед тем как настраивать Excel на совместную работу с MatLab, следует убедиться, что Excel Link входит в установленную версию MatLab. В подкаталоге exclink основного каталога MatLab или подкаталога toolbox должен находиться файл с надстройкой excllink.xla . Запустите Excel и в меню Tools выберите пункт Add-ins . Откроется диалоговое окно, содержащее информацию о доступных в данный момент надстройках. Используя кнопку Browse , укажите путь к файлу excllink.xla . В списке надстроек диалогового окна появится строка Excel Link 2.0 for use with MatLab с установленным флагом. Нажмите OK , требуемая надстройка добавлена в Excel.
Обратите внимание, что в Excel теперь присутствует панель инструментов Excel Link , содержащая три кнопки: putmatrix , getmatrix , evalstring . Эти кнопки реализуют основные действия, требуемые для осуществления взаимосвязи между Excel и MatLab — обмен матричными данными, и выполнение команд MatLab из среды Excel. При повторных запусках Excel надстройка excllink.xla подключается автоматически.
Согласованная работа Excel и MatLab требует еще нескольких установок, которые приняты в Excel по умолчанию (но могут быть изменены). В меню Tools перейдите к пункту Options , открывается диалоговое окно Options . Выберите вкладку General и убедитесь, что флаг R1C1 reference style выключен, т.е. ячейки нумеруются A1 , A2 и т.д. На вкладке Edit должен быть установлен флаг Move selection after Enter .
3.2. Обмен данными между MatLab и Excel
Запустите Excel, проверьте, что проделаны все необходимые настройки так, как описано в предыдущем разделе (MatLab должен быть закрыт). Введите в ячейки с A1 по C3 матрицу, для отделения десятичных знаков используйте точку в соответствии с требованиями Excel.
Выделите на листе данные ячейки и нажмите кнопку putmatrix , появляется окно Excel с предупреждением о том, что MatLab не запущен. Нажмите OK , дождитесь открытия MatLab.
Появляется диалоговое окно Excel со строкой ввода, предназначенной для определения имени переменной рабочей среды MatLab, в которую следует экспортировать данные из выделенных ячеек Excel. Введите к примеру, М и закройте окно при помощи кнопки OK . Перейдите к командному окну MatLab и убедитесь, что в рабочей среде создалась переменная М , содержащая массив три на три:
Проделайте некоторые операции в MatLab с матрицей М , например, обратите ее.
Вызов inv для обращения матрицы, как и любой другой команды MatLab можно осуществить прямо из Excel. Нажатие на кнопку evalstring , расположенную на панели Excel Link , приводит к появлению диалогового окна, в строке ввода которого следует набрать команду MatLab
Результат аналогичен полученному при выполнении команды в среде MatLab.
Вернитесь в Excel, сделайте текущей ячейку A5 и нажмите кнопку getmatrix . Появляется диалоговое окно со строкой ввода, в которой требуется ввести имя переменной, импортируемой в Excel. В данном случае такой переменной является IM . Нажмите OK , в ячейки с A5 по A7 введены элементы обратной матрицы.
Итак, для экспорта матрицы в MatLab следует выделить подходящие ячейки листа Excel, а для импорта достаточно указать одну ячейку, которая будет являться верхним левым элементом импортируемого массива. Остальные элементы запишутся в ячейки листа согласно размерам массива, переписывая содержащиеся в них данные, поэтому следует соблюдать осторожность при импорте массивов.
Вышеописанный подход является самым простым способом обмена информацией между приложениями — исходные данные содержатся в Excel, затем экспортируются в MatLab, обрабатываются там некоторым образом и результат импортируется в Excel. Пользователь переносит данные при помощи кнопок панели инструментов Excel Link . Информация может быть представлена в виде матрицы, т.е. прямоугольной области рабочего листа. Ячейки, расположенные в строку или столбец, экспортируются, соответственно, в вектор ы -строки и вектор ы -столбцы MatLab. Аналогично происходит и импорт векторов-строк и векторов-столбцов в Excel.
4. Программирование
4.1. М-файлы
Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.
Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file . Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.
М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files), содержащие последовательность команд, и файл-функции, (Function M-Files), в которых описываются функции, определяемые пользователем.
4.2. Файл-программа
Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне
Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug . На экране появится графическое окно Figure 1, содержащее графики функций.
Команды файл-программы осуществляют вывод в командное окно. Для подавления вывода следует завершать команды точкой с запятой. Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибки в командное окно.
Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1. Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift, первые четыре команды и выполните их из пункта Text . Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9 .
Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:
Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов.
4.3. Файл-функция
Рассмотренная выше файл-программа является только последовательностью команд MatLab, она не имеет входных и выходных аргументов. Для использования численных методов и при программировании собственных приложений в MatLab необходимо уметь составлять файл-функции, которые производят необходимые действия с входными аргументами и возвращают результат действия в выходных аргументах. Разберем несколько простых примеров, позволяющих понять работу с файл-функциями.
Проводя предобработку данных многомерного анализа хемометрики часто применяет центрирование. Имеет смысл один раз написать файл-функцию, а потом вызывать его всюду, где необходимо производить центрирование. Откройте в редакторе М-файлов новый файл и наберите
Слово function в первой строке определяет, что данный файл содержит файл-функцию. Первая строка является заголовком функции, в которой размещается имя функции и списка входных и выходных аргументов. В примере имя функции centering , один входной аргумент X и один выходной — Xc. После заголовка следуют комментарии, а затем — тело функции (оно в данном примере состоит из двух строк), где и вычисляется ее значение. Важно, что вычисленное значение записывается в Xc . Не забудьте поставить точку с запятой для предотвращения вывода лишней информации на экран. Теперь сохраните файл в рабочем каталоге. Обратите внимание, что выбор пункта Save или Save as меню File приводит к появлению диалогового окна сохранения файла, в поле File name которого уже содержится название centering . Не изменяйте его, сохраните файл функцию в файле с предложенным именем!
Теперь созданную функцию можно использовать так же, как и встроенные sin , cos и другие. Вызов собственных функций может осуществляться из файл-программы и из другой файл-функции. Попробуйте сами написать файл-функцию, которая будет шкалировать матрицы, т.е. делить каждый столбец на величину среднеквадратичного отклонения по этому столбцу.
Можно написать файл-функции с несколькими входными аргументами, которые размещаются в списке через запятую. Можно также создавать и функции, возвращающие несколько значений. Для этого выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды.
При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины.
4.4 Создание графика
MatLab имеет широкие возможности для графического изображения векторов и матриц, а также для создания комментариев и печати графиков. Дадим описание несколько важных графических функций.
Функция plot имеет различные формы, связанные с входными параметрами, например plot(y) создает кусочно-линейный график зависимости элементов y от их индексов. Если в качестве аргументов заданы два вектора, то plot(x,y) создаст график зависимости y от x . Например, для построения графика функции sin в интервале от 0 до 2π, сделаем следующее
Программа построила график зависимости, который отображается в окне Figure 1
MatLab автоматически присваивает каждому графику свой цвет (исключая случаи, когда это делает пользователь), что позволяет различать наборы данных.
Команда hold on позволяет добавлять кривые на существующий график. Функция subplot позволяет выводить множество графиков в одном окне
4.5 Печать графиков
Пункт Print в меню File и команда print печатают графику MatLab. Меню Print вызывает диалоговое окно, которое позволяет выбирать общие стандартные варианты печати. Команда print обеспечивает большую гибкость при выводе выходных данных и позволяет контролировать печать из М-файлов. Результат может быть послан прямо на принтер, выбранный по умолчанию, или сохранен в заданном файле.
5. Примеры программ
В этом разделе приведены наиболее употребительные алгоритмы, используемые при анализе многомерных данных. Рассмотрены как простейшие методы преобразования данных центрирование и шкалирование, так и алгоритмы для анализа данных — PCA, PLS.
5.1. Центрирование и шкалирование
Часто при анализе требуется преобразовать исходные данные. Наиболее используемыми методами преобразования данных выступают центрирование и шкалирование каждой переменной на стандартное отклонение. В разделе 4.3 приводился код функции для центрирования матрицы. Поэтому ниже показан только код функции, которая шкалирует данные. Обратите внимание, что исходная матрица должна быть центрирована
function Xs = scaling(X) % scaling: the output matrix is Xs % matrix X must be centered |
Xs = X * inv(diag(std(X)));
%end of scaling
5.2. SVD/PCA
Наиболее популярным способом сжатия данных в многомерном анализе является метод главных компонент (PCA). С математической точки зрения PCA — это декомпозиция исходной матрицы X, т.е. представление ее в виде произведения двух матриц T и P
Матрица T называется матрицей счетов (scores) , матрица P — матрицей нагрузок (loadings), а E — матрицей остатков.
Простейший способ найти матрицы T и P — использовать SVD разложение через стандартную функцию MatLab, называемую svd .
function [T, P] = pcasvd(X) % pcasvd: calculates PCA components. % The output matrices are T and P. % T contains scores % P contains loadings |
[U,D,V] = svd(X);
T = U * D;
P = V;
%end of pcasvd
5.3 PCA/NIPALS
Для построения PCA счетов и нагрузок, используется рекуррентный алгоритм NIPALS, который на каждом шагу вычисляет одну компоненту. Сначала исходная матрица X преобразуется (как минимум – центрируется; см. раздел 4.3) и превращается в матрицу E0, a=0. Далее применяют следующий алгоритм.
После вычисления очередной (a-ой) компоненты, полагаем ta=t и pa=p. Для получения следующей компоненты надо вычислить остатки Ea+1 = Ea – t p t и применить к ним тот же алгоритм, заменив индекс a на a+1.
Код алгоритма NIPALS может быть написан и самими читателями, в данном же пособии авторы приводят свой вариант. При расчете PCA, можно вводить число главных компонент (переменная numberPC ). Если же не известно, сколько необходимо компонент, следует написать в командной строке [P,T] = pcanipals (X) и тогда программа задаст число компонент равным наименьшему из показателей размерности исходной матрицы X.
function [T, P] = pcanipals(X, numberPC) % pcanipals: calculates PCA components. % The output matrices are T and P. % T contains scores % P contains loadings |
% calculation of number of components
[X_r, X_c] = size(X); P=[]; T=[];
if lenfth(numberPC) > 0
pc = numberPC;
elseif (length(numberPC) == 0) & X_r pc = X_r;
else
pc = X_c;
end;
% calculation of scores and loadings for each component
for k = 1:pc
P1 = rand(X_c, 1); T1 = X * P1; d0 = T1’*T1;
P1 = (T1′ * X/(T1′ * T1))’; P1 = P1/norm(P1); T1 = X * P1; d = T1′ * T1;
while d — d0 > 0.0001;
P1 = (T1′ * X/(T1′ * T1)); P1 = P1/norm(P1); T1 = X * P1; d0 = T1’*T1;
P1 = (T1′ * X/(T1′ * T1)); P1 = P1/norm(P1); T1 = X * P1; d = T1’*T1;
end
X = X — T1 * P1; P = cat(1, P, P1′); T = [T,T1];
end
О вычислении PCA с помощью надстройки Chemometrics рассказано в пособии Проекционные методы в системе Excel.
5.4 PLS1
Самым популярным способом для многомерной калибровки является метод проекции на латентные структуры (PLS). В этом методе проводится одновременная декомпозиция матрицы предикторов X и матрицы откликов Y:
Проекция строится согласованно – так, чтобы максимизировать корреляцию между соответствующими векторами X-счетов ta и Y-счетов ua. Если блок данных Y включает несколько откликов (т.е. K>1), можно построить две проекции исходных данных – PLS1 и PLS2. В первом случае для каждого из откликов yk строится свое проекционное подпространство. При этом и счета T (U) и нагрузки P (W, Q) , зависят от того, какой отклик используется. Этот подход называется PLS1. Для метода PLS2 строится только одно проекционное пространство, которое является общим для всех откликов.
Детальное описание метода PLS приведено в этой книге Для построения PLS1 счетов и нагрузок, используется рекуррентный алгоритм. Сначала исходные матрицы X и Y центрируют
[E0, mX] = mc(X); [F0, mY] = mc(Y); |
и они превращаются в матрицу E0 и вектор f0, a=0. Далее к ним применяет следующий алгоритм
После вычисления очередной (a-ой) компоненты, полагаем ta=t и pa=p. Для получения следующей компоненты надо вычислить остатки Ea+1 = Ea – t p t и применить к ним тот же алгоритм, заменив индекс a на a+1.
Приведем код этого алгоритма, взятый из книги
function [w, t, u, q, p] = pls(x, y) %PLS: calculates a PLS component. %The output vectors are w, t, u, q and p. % % Choose a vector from y as starting vector u. u = y(:, 1); |
% The convergence criterion is set very high.
kri = 100;
% The commands from here to end are repeated until convergence.
while (kri > 1e — 10)
% Each starting vector u is saved as uold.
uold = u; w = (u’ * x)’; w = w/norm(w);
t = x * w; q = (t’ * y)’/(t’ * t);
u = y * q/(q’ * q);
% The convergence criterion is the norm of u-uold divided by the norm of u.
kri = norm(uold — u)/norm(u);
end;
% After convergence, calculate p.
p = (t’ * x)’/(t’ * t);
% End of pls
О вычислении PLS1 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.
5.5 PLS2
Для PLS2 алгоритм выглядит следующим образом. Сначала исходные матрицы X и Y преобразуют (как минимум – центрируют; см. разделе 4.3), и они превращаются в матрицы E0 и F0, a=0. Далее к ним применяет следующий алгоритм.
Приведем код, которой также заимствован из из книги.
function [W, T, U, Q, P, B, SS] = plsr(x, y, a) % PLS: calculates a PLS component. % The output matrices are W, T, U, Q and P. % B contains the regression coefficients and SS the sums of % squares for the residuals. % a is the numbers of components. % % For a components: use all commands to end. |
for i=1:a
% Calculate the sum of squares. Use the function ss.
sx = [sx; ss(x)];
sy = [sy; ss(y)];
% Use the function pls to calculate one component.
[w, t, u, q, p] = pls(x, y);
% Calculate the residuals.
x = x — t * p’;
y = y — t * q’;
% Save the vectors in matrices.
W = [W w];
T = [T t];
U = [U u];
Q = [Q q];
P = [P p];
end;
% Calculate the regression coefficients after the loop.
B=W*inv(P’*W)*Q’;
% Add the final residual SS to the sum of squares vectors.
sx=[sx; ss(x)];
sy=[sy; ss(y)];
% Make a matrix of the ss vectors for X and Y.
SS = [sx sy];
%Calculate the fraction of SS used.
[a, b] = size(SS);
tt = (SS * diag(SS(1,:).^(-1)) — ones(a, b)) * (-1)
function [ss] = ss(x)
%SS: calculates the sum of squares of a matrix X.
%
ss=sum(sum(x. * x));
%End of ss
О вычислении PLS2 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.
Заключение
MatLab это это очень популярный инструмент для анализа данных. По данным опроса, его используют до трети всех исследователей, тогда как программа the Unsrambler применяется только 16% ученых. Главным недостатком MatLab являются его высокая цена. Кроме того, MatLab хорош для рутинных расчетов. Отсутствие интерактивности делает его неудобным при выполнении поисковых, исследовательских расчетов для новых, неисследованных массивов данных.
Проблему цены решает альтернативное математическое обеспечение Chemometrics — специальная надстройка для системы Microsoft Excel. Подробнее о ней рассказано в пособии Проекционные методы в системе Excel.