Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Вопрос по геометрии:

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией . Помогите

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Нет. Трапеция — четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Также с двумя параллельными прямыми есть параллелограм,

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Видео:Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать

Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрии

Трапеция и ее свойства с определением и примерами решения

Содержание:

Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

На рисунке 66 изображена трапеция Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Свойства трапеции

Рассмотрим некоторые свойства трапеции.

1. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.

Так как Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как сумма внутренних односторонних углов). Аналогично Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

2. Трапеция является выпуклым четырехугольником.

Поскольку Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейАналогично Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейСледовательно, трапеция — выпуклый четырехугольник.

Высотой трапеции называют перпендикуляр, проведенный из любой точки основания трапеции к прямой, содержащей другое ее основание.

Как правило, высоту трапеции проводят из ее вершины. На рисунке 67 Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— высота трапеции Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Трапецию называют прямоугольной, если один из ее углов -прямой. На рисунке 68 — прямоугольная трапеция Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейВсякий ли четырехугольник у которого есть две параллельные стороны является трапециейОчевидно, что Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейявляется меньшей боковой стороной прямоугольной трапеции и ее высотой.

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Трапецию называют равнобокой, если ее боковые стороны равны. На рисунке 69 — равнобокая трапеция Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Свойства равнобокой трапеции

Рассмотрим некоторые важные свойства равнобокой трапеции.

1. В равнобокой трапеции углы при основании равны.

Доказательство:

1) Пусть в трапеции Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПроведем высоты трапеции Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейиз вершин ее тупых углов Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(рис. 70). Получили прямоугольник Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПоэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

2) Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по катету и гипотенузе). Поэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

3) Также Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейНо Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейпоэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейСледовательно, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

2. Диагонали равнобокой трапеции равны.

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Доказательство:

Рассмотрим рисунок 71. Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как углы при основании равнобокой трапеции), Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— общая сторона треугольников Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПоэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по двум сторонам и углу между ними). Следовательно, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Пример:

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— точка пересечения диагоналей равнобокой трапеции Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейс основаниями Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(рис. 71). Докажите, что Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Доказательство:

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(доказано выше). Поэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПо признаку равнобедренного треугольника Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— равнобедренный. Поэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПоскольку Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(так как Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией).

Теорема (признак равнобокой трапеции). Если в трапеции углы при основании равны, то трапеция — равнобокая.

Доказательство:

1) Пусть в Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейуглы при большем основании Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейравны (рис. 70), то есть Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПроведем высоты Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейони равны.

2) Тогда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по катету и противолежащему углу). Следовательно, Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейТаким образом, трапеция равнобокая, что и требовалось доказать.

Термин «трапеция» греческого происхождения (по-гречески «трапед-зион» означает «столик», в частности столик для обеда; слова «трапеция» и «трапеза» — однокоренные).

В «Началах» Евклид под термином «трапеция» подразумевал любой четырехугольник, не являющийся параллелограммом. Большинство математиков Средневековья использовали термин «трапеция» с тем же смыслом.

Трапеция в современной трактовке впервые встречается у древнегреческого математика Посидония (I в.), но начиная только с XVIII в. этот термин стал общепринятым для четырехугольников, у которых две стороны параллельны, а две другие — не параллельны.

Видео:Всё о трапеции за 60 секундСкачать

Всё о трапеции за 60 секунд

Свойство средней линии трапеции

Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

Рассмотрим свойство средней линии трапеции.

Теорема (свойство средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:

Пусть Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— данная трапеция, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— ее средняя линия (рис. 109). Докажем, что Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

1) Проведем луч Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейдо его пересечения с лучом Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПусть Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— точка их пересечения. Тогда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как внутренние накрест лежащие при параллельных прямых Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи секущей Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как вертикальные), Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по условию). Следовательно, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по стороне и двум прилежащим углам), откуда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как соответственные стороны равных треугольников).

2) Поскольку Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— средняя линия треугольника Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейТогда, по свойству средней линии треугольника, Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейа значит, Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейНо так как Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

3) Кроме того, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Пример:

Докажите, что отрезок средней линии трапеции, содержащийся между ее диагоналями, равен полуразности оснований.

Доказательство:

Пусть Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— средняя линия трапеции Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— точка пересечения Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— точка пересечения Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(рис. 110). Пусть Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейДокажем, что Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

1) Так как Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейто, по теореме Фалеса, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией-середина Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— середина Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПоэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— средняя линия треугольника Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейВсякий ли четырехугольник у которого есть две параллельные стороны является трапецией— средняя линия треугольника Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Тогда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

2) Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— средняя линия трапеции, поэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

3) Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Пример:

В равнобокой трапеции диагональ делит острый угол пополам. Найдите среднюю линию трапеции, если ее основания относятся как 3 : 7, а периметр трапеции — 48 см.

Решение:

Пусть Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— данная трапеция, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— ее средняя линия, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(рис. 111).

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

1) Обозначим Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейТогда

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

2) Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по условию). Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(как внутренние накрест лежащие при параллельных прямых Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейи секущей Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейПоэтому Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейСледовательно, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией— равнобедренный, у которого Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по признаку равнобедренного треугольника). Но Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией(по условию), значит, Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

3) Учитывая, что Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейполучим уравнение: Всякий ли четырехугольник у которого есть две параллельные стороны является трапециейоткуда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

4) Тогда Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

То, что средняя линия трапеции равна полусумме оснований, было известно еще древним египтянам; эту информацию содержал папирус Ахмеса (примерно XVII в. до н. э.).

О свойстве средней линии трапеции знали также и вавилонские землемеры; это свойство упоминается и в трудах Герона Александрийского (первая половина I в. н. э.).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площадь трапеции
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Площадь параллелограмма
  • Прямоугольник и его свойства
  • Ромб и его свойства, определение и примеры
  • Квадрат и его свойства

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Четырехугольники. Тест теоретический.Скачать

Четырехугольники. Тест теоретический.

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией .

В 22:007 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.

Видео:Вся теория по четырехугольникам. Все прототипы №17 из ОГЭ-2024 по математике| РозыгрышСкачать

Вся теория по четырехугольникам. Все прототипы №17 из ОГЭ-2024 по математике| Розыгрыш

Вопрос вызвавший трудности

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией . Помогите

Видео:8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «Геометрия». Ваш вопрос звучал следующим образом:

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией . Помогите

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Нет. Трапеция — четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Также с двумя параллельными прямыми есть параллелограм,

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Всякий ли четырехугольник у которого есть две параллельные стороны является трапецией

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Юдина Санта Артемовна — автор студенческих работ, заработанная сумма за прошлый месяц 53 876 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания — цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.

🔍 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Трапеция и ее свойства. Урок 3. Геометрия 8 классСкачать

Трапеция и ее свойства. Урок 3. Геометрия 8 класс

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Геометрия 8 класс (Урок№4 - Трапеция)Скачать

Геометрия 8 класс (Урок№4 - Трапеция)

№1,16 Свойства трапеции. Планиметрия ЕГЭ 2023 по математикеСкачать

№1,16 Свойства трапеции. Планиметрия ЕГЭ 2023 по математике

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

все, что нужно знать для 16 задачи | вся планиметрия в одном видеоСкачать

все, что нужно знать для 16 задачи | вся планиметрия в одном видео

ОГЭ по математике 2024 геометрия | Разбор всех 17 заданийСкачать

ОГЭ по математике 2024 геометрия | Разбор всех 17 заданий

Урок 17. Площадь криволинейной трапеции. Алгебра 11 класс.Скачать

Урок 17. Площадь криволинейной трапеции. Алгебра 11 класс.

СРЕДНЯЯ ЛИНИЯ. ТРАПЕЦИЯ. ВПИСАННЫЕ И ОПИСАННЫЕ ЧЕТЫРЕХУГОЛЬНИКИ. Контрольная № 2 Геометрия 8 классСкачать

СРЕДНЯЯ ЛИНИЯ. ТРАПЕЦИЯ. ВПИСАННЫЕ И ОПИСАННЫЕ ЧЕТЫРЕХУГОЛЬНИКИ. Контрольная № 2 Геометрия 8 класс

Трапеция.Скачать

Трапеция.
Поделиться или сохранить к себе: