- 8 класс. Геометрия. Четырехугольники. Прямоугольник, ромб и квадрат.
- Вопросы
- Поделись с друзьями
- Комментарии преподавателя
- 1. Определение, виды и свойства трапеции
- 2. Определение, свойства и признаки параллелограмма
- 3. Определение, свойство и признак прямоугольника
- 4. Определение и свойство ромба
- 5. Определение и свойства квадрата
- 6. Задача на схожесть свойств трапеции и параллелограмма
- 7. Теорема Фалеса и задача на ее применение
- 8. Разные задачи на четырехугольники
- Все теоремы четырехугольника 8 класс
- Свойства углов и сторон четырехугольника
- Виды четырехугольников
- Геометрия. Урок 4. Четырехугольники
- Определение четырехугольника
- Выпуклые четырехугольники
- Параллелограмм
- Прямоугольник
- Квадрат
- Трапеция
- Примеры решений заданий из ОГЭ
- 📽️ Видео
8 класс. Геометрия. Четырехугольники. Прямоугольник, ромб и квадрат.
- Оглавление
- Занятия
- Обсуждение
- О курсе
Вопросы
Задай свой вопрос по этому материалу!
Поделись с друзьями
Комментарии преподавателя
Повторение теории и решение задач
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
1. Определение, виды и свойства трапеции
Ранее мы уже познакомились с такими видами четырехугольников, как параллелограмм и трапеция, и их частными случаями – прямоугольником, ромбом и квадратом. Мы изучили их основные свойства и признаки. Сегодня мы повторим и обобщим все полученные нами знания по этой теме.
Повторим основной теоретический материал.
Трапеция – это четырехугольник, у которого две противоположные стороны параллельны, а две другие не параллельны (см. Рис. 1).
Выделяют два отдельных типа трапеций: равнобедренную и прямоугольную.
Равнобедренная трапеция – это трапеция, в которой боковые стороны равны (см. Рис. 2).
Рис. 2. Равнобедренная трапеция
Прямоугольная трапеция – это трапеция, в которой одна из боковых сторон перпендикулярна основанию (см. Рис. 3).
Рис. 3. Прямоугольная трапеция
Отдельно стоит вспомнить такой важный элемент трапеции, как ее средняя линия.
Средняя линия трапеции – это отрезок, соединяющий середины боковых сторон трапеции (см. Рис. 4).
Рис. 4. Средняя линия трапеции
Основные свойства средней линии трапеции:
1. – параллельна основаниям трапеции;
2. – равна их полусумме.
Видео:ВСЯ ТЕОРИЯ по ГЕОМЕТРИИ ЗА 8 КЛАСС с примерамиСкачать
2. Определение, свойства и признаки параллелограмма
Параллелограмм – четырехугольник, у которого каждые две противоположные стороны параллельны (см. Рис. 5).
Рис. 5. Параллелограмм
Основные свойства параллелограмма:
Чтобы иметь возможность при решении задач пользоваться указанными свойствами, нам необходимо понимать, является ли указанный четырехугольник параллелограммом или нет. Для этого необходимо знать признаки параллелограмма.
Теорема. Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны (см. Рис. 6), то этот четырехугольник – параллелограмм. параллелограмм.
Рис. 6. Первый признак параллелограмма
Теорема. Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны (см. Рис. 7), то этот четырехугольник – параллелограмм. параллелограмм.
Рис. 7. Второй признак параллелограмма
Теорема. Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам (см. Рис. 8), то этот четырехугольник – параллелограмм. параллелограмм.
Рис. 8. Третий признак параллелограмма
Теперь повторим частные случаи параллелограмма.
Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
3. Определение, свойство и признак прямоугольника
Прямоугольником называют параллелограмм, у которого все углы прямые (см. Рис. 9).
Рис. 9. Прямоугольник
Замечание. Очевидным эквивалентным определением прямоугольника (иногда его именуют признаком прямоугольника) можно назвать следующее. Прямоугольник – это параллелограмм с одним углом . Это утверждение практически очевидно, и мы оставим его без доказательства, пользуясь далее как определением.
Т.к. прямоугольник, как это видно из определения, является частным случаем параллелограмма, то ему присущи все ранее описанные свойства параллелограмма, однако у него имеются и свои специфические свойства, которые мы сейчас рассмотрим.
Теорема. Свойство прямоугольника. Диагонали прямоугольника равны (см. Рис. 10).
.
Рис. 10. Свойство прямоугольника
Теорема. Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник (см. Рис. 11).
Рис. 11. Признак прямоугольника
Видео:ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.Скачать
4. Определение и свойство ромба
Ромб – параллелограмм, у которого все стороны равны (см. Рис. 12).
Замечание. Для определения ромба достаточно указывать даже более короткое утверждение, что это параллелограмм, у которого равны две смежные стороны .
Ромб обладает всеми свойствами параллелограмма, т.к. является его частным случаем, но имеет и свое специфическое свойство.
Теорема. Свойство ромба. Диагонали ромба перпендикулярны и делят углы ромба пополам (см. Рис. 13).
Рис. 13. Свойство ромба
Видео:Геометрия 8 класс за 1 час | Математика | УмскулСкачать
5. Определение и свойства квадрата
Квадрат – 1) прямоугольник, у которого стороны равны; 2) ромб, у которого углы прямые (см. Рис. 14). Указанные определения эквивалентны и применяются в любой удобной форме.
Квадрату присущи свойства тех фигур, частным случаем которых он является (параллелограмм, прямоугольник, ромб). Перечислим их.
Основные свойства квадрата (см. Рис. 15):
1. Все углы прямые.
2. Диагонали равны.
3. Диагонали перпендикулярны.
4. Точка пересечения делит диагонали пополам.
5. Диагонали делят углы квадрата пополам.
Рис. 15. Свойства квадрата
Видео:ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 классСкачать
6. Задача на схожесть свойств трапеции и параллелограмма
Теперь, когда мы перечислили и вспомнили основные свойства основных изученных четырехугольников, мы можем закрепить эти знания на примере решения задач.
Пример 1. (Обобщенная задача на трапецию и параллелограмм). Дана трапеция или параллелограмм (см. Рис. 16). биссектрисы углов при боковой стороне трапеции (параллелограмма). Найти угол между биссектрисами .
Решение. Это пример задачи, демонстрирующий схожесть некоторых свойств параллелограмма и трапеции, в нем не важно, какая конкретно из этих двух фигур задана. Изобразим рисунок.
– биссектрисы, они делят соответствующие углы пополам, обозначим их и .
По свойству трапеции (параллелограмма) .
Рассмотрим : .
Ответ: .
Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
7. Теорема Фалеса и задача на ее применение
Вспомним формулировку теоремы Фалеса.
Теорема Фалеса. Если параллельные прямые, которые пересекают стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (см. Рис. 17).
Рис. 17. Теорема Фалеса
Рассмотрим задачу на трапецию с применением теоремы Фалеса.
Пример 2. Боковая сторона трапеции разделена на три равные части, и из точек деления проведены к другой стороне отрезки, параллельные основаниям. Найдите длину этих отрезков, если основания трапеции равны 2 м и 5 м.
Решение. Изобразим Рис. 18 со всеми элементами, которые пригодятся нам в процессе решения. Известно, что . Найти длины .
Для того, чтобы воспользоваться теоремой Фалеса относительно угла , проведем прямые .
Сначала рассмотрим параллелограмм , в нем по свойству .
Вернемся к проведенным параллельным прямым, по теореме Фалеса: . . Поскольку отрезок разделен на три равные части, то .
Теперь, если внимательно посмотреть на параллелограммы, образованные пересечениями линий с проведенными нами прямыми , можно легко определить длины отрезков : , .
Ответ. .
Пример 3. Основания трапеции относятся как 2:3. Средняя линия равна 5 м. Найдите основания.
Решение. Изобразим Рис. 19 и укажем, что нам дано: . Найти и .
Поскольку известно, что , то выразим основания трапеции через условные части : . Запишем свойство средней линии трапеции:
.
Ответ. .
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
8. Разные задачи на четырехугольники
Пример 4. Через данную точку внутри угла проведите прямую, отрезок которой, заключенный внутри этого угла, делился бы данной точкой пополам.
Решение. Внутри угла с вершиной дана точка . Изобразим это на Рис. 20 со всеми элементами, которые понадобятся нам для решения задачи.
Отложим отрезок из точки через точку так, чтобы , затем проведем отрезки , получим точки пересечения со сторонами угла и соответственно. Соединим эти точки прямой, она и будет искомой. Докажем это.
Построенная фигура является параллелограммом, т.к. по построению имеет параллельные противоположные стороны, отрезки являются диагоналями параллелограмма, следовательно, по его свойству точкой пересечения () делятся пополам и , что и требовалось по условию задачи.
Ответ. Искомая прямая – .
Пример 5. В прямоугольнике точка пересечения диагоналей отстоит от меньшей стороны на 4 см дальше, чем от большей стороны. Периметр прямоугольника равен 56 см. Найдите стороны прямоугольника.
Решение. Изобразим Рис. 21.
Опустим из точки пересечения диагоналей перпендикуляры на стороны, длины которых и будут расстояниями от точки пересечения диагоналей до сторон прямоугольника. Обозначим отрезок , тогда по условию . Поскольку получаем, что . Подставим это в формулу периметра прямоугольника:
.
Ответ: .
Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
Все теоремы четырехугольника 8 класс
Четырехугольник — фигура, состоящая из четырех точек и четырех отрезков,последовательно их соединяющих; причем ни одна из трех данных точек не лежит на одной прямой, а отрезки, соединяющие их, не пересекаются.
Соседние вершины — вершины четырехугольника, являющиеся концами одной из его сторон.
Противолежащие вершины — несоседние вершины.
Соседние стороны — стороны выходящие из одной вершины. Противолежащие стороны — несоседние стороны.
Диагональ четырехугольника — отрезок, соединяющий противолежащие вершины четырехугольника.
Периметр четырехугольника — сумма длин всех сторон.
Выпуклый четырехугoльник — четырехугольник, лежащий в одной полуплоскости относительно прямой,содержащей его сторону.
Внешний угол четырехугольника — угол,смежный с углом четырехугольника.
Свойства углов и сторон четырехугольника
Свойства углов
1. Сумма углов четырехугольника равна 360°.
2. Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.
Свойства сторон
1. Каждая сторона четырехугольника меньше суммы всех его других сторон.
2. Сумма диагоналей меньше его периметра.
Виды четырехугольников
Конспекты по четырехугольникам:
Это конспект по теме «Четырехугольники и его свойства». Выберите дальнейшие действия:
Видео:Четырехугольники. Вебинар | МатематикаСкачать
Геометрия. Урок 4. Четырехугольники
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение четырехугольника
- Выпуклые четырехугольники
- Параллелограмм
Видео:Миникурс по геометрии. ЧетырехугольникиСкачать
Определение четырехугольника
Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
Четырехугольники бывают выпуклые ( A B C D ) и невыпуклые ( A 1 B 1 C 1 D 1 ) .
Видео:Все теоремы по геометрии за 8 классСкачать
Выпуклые четырехугольники
В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.
Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон: A B и A D , A B и B C , B C и C D , C D и A D .
Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон: A B и C D , B C и A D .
Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин: A и C , B и D .
Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. A C и B D – диагонали четырехугольника A B C D .
Диагонали выпуклого четырехугольника пересекаются в одной точке.
Площадь произвольного выпуклого четырехугольника можно найти по формуле:
S = 1 2 d 1 d 2 ⋅ sin φ
где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).
Рассмотрим более подробно некоторые виды выпуклых четырехугольников.
Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.
Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.
Видео:ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭСкачать
Параллелограмм
Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограмма:
- Противолежащие стороны равны.
- Противоположные углы равны.
- Диагонали точкой пересечения делятся пополам.
- Сумма углов, прилежащих к одной стороне, равна 180 ° .
- Сумма квадратов диагоналей равна сумме квадратов сторон. d 1 2 + d 2 2 = 2 ( a 2 + b 2 )
Площадь параллелограмма можно найти по трём формулам.
Как произведение стороны и высоты, проведенной к ней.
Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.
Как произведение двух смежных (соседних) сторон на синус угла между ними.
Как полупроизведение диагоналей на синус угла между ними.
Ромб – параллелограмм, у которого все стороны равны.
Свойства ромба:
- Диагонали пересекаются под прямым углом.
- Диагонали являются биссектрисами углов, из которых выходят.
- Сохраняются все свойства параллелограмма.
Площадь ромба можно найти по трём формулам.
Как произведение стороны ромба на высоту ромба.
Как квадрат стороны ромба на синус угла между двумя сторонами.
Как полупроизведение диагоналей ромба.
Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать
Прямоугольник
Прямоугольник – это параллелограмм, у которого все углы равны 90 ° .
Свойства прямоугольника:
- Диагонали прямоугольника равны.
- Сохраняются все свойства параллелограмма.
Площадь прямоугольника можно найти по двум формулам:
Как произведение двух смежных (соседних) сторон прямоугольника.
Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.
Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать
Квадрат
Квадрат – прямоугольник, у которого все стороны равны.
Свойства квадрата:
- Сохраняет свойства ромба.
- Сохраняет свойства прямоугольника.
Площадь квадрата можно вычислить по двум формулам:
Как квадрат стороны.
Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).
Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать
Трапеция
Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.
Стороны, которые параллельны друг другу называются основаниями , другие две стороны называются боковыми сторонами .
B C и A D – основания, A B и C D – боковые стороны трапеции A B C D .
Свойства трапеции:
сумма углов, прилежащих к боковой стороне, равна 180 ° .
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2
Площадь трапеции можно найти по двум формулам:
Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.
Как полупроизведение диагоналей на синус угла между ними.
Виды трапеций
Прямоугольная трапеция – трапеция, у которой два угла прямые.
Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.
Свойство равнобокой трапеции: углы при основании равны
Видео:Математика| Геометрия 8 класса в одной задачеСкачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с четырехугольниками
📽️ Видео
Как быстро и легко выучить теорему по математике. На примере теоремы ПифагораСкачать
Прямоугольник. 8 класс.Скачать
8 класс, 7 урок, ПрямоугольникСкачать