Все свойства высот треугольника

Свойства высот треугольника

Видео:Свойства ортоцентра и свойства высот треугольникаСкачать

Свойства ортоцентра и свойства высот треугольника

свойства высоты в треугольнике

Свойство 1
Все свойства высот треугольника

Высоты треугольника или их продолжения пересекаются в одной точке — ортоцентре треугольника.

Свойство 2
Все свойства высот треугольника

Если AD, BE, CF — высоты треугольника ABC, O — точка пересечения этих высот или их продолжений, то:

Все свойства высот треугольника

Свойство 3
Все свойства высот треугольника

Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, подобных между собой и подобных исходному треугольнику:

Все свойства высот треугольника

Высота на сторону c вычисляется по формулам:

Видео:Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Видео:Свойства высот треугольникаСкачать

Свойства высот треугольника

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

  • проходить внутри треугольника (в остроугольном △);
    Все свойства высот треугольника
  • проходить за рамками треугольника (в тупоугольном △);
    Все свойства высот треугольника
  • являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
    Все свойства высот треугольника

Видео:Свойство высоты в прямоугольном треугольникеСкачать

Свойство высоты в прямоугольном треугольнике

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

  • в остроугольном треугольнике;
    Все свойства высот треугольника
  • в тупоугольном треугольнике;
    Все свойства высот треугольника
  • в прямоугольном треугольнике.
    Все свойства высот треугольника
    Вершина A является, в т.ч., точкой пересечения высот.

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

  • ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
    Все свойства высот треугольника
  • AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
  • ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB =BFE,CAB =BEF).
    Все свойства высот треугольника
    Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Все свойства высот треугольника

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Все свойства высот треугольника

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

Видео:Свойства биссектрисы треугольникаСкачать

Свойства биссектрисы треугольника

Высота треугольника. Задача Фаньяно

Все свойства высот треугольникаВысота треугольника. Свойство высоты прямоугольного треугольника
Все свойства высот треугольникаРасположение высот у треугольников различных типов
Все свойства высот треугольникаОртоцентр треугольника
Все свойства высот треугольникаРасположение ортоцентров у треугольников различных типов
Все свойства высот треугольникаОртоцентрический треугольник
Все свойства высот треугольникаЗадача Фаньяно

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Все свойства высот треугольника

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Все свойства высот треугольника

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникВсе свойства высот треугольникаВсе высоты остроугольного треугольника лежат внутри треугольника.
Все свойства высот треугольника
Все свойства высот треугольника
Прямоугольный треугольникВсе свойства высот треугольникаВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Все свойства высот треугольника
Все свойства высот треугольника
Тупоугольный треугольникВсе свойства высот треугольникаВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Все свойства высот треугольника
Все свойства высот треугольника
Остроугольный треугольник
Все свойства высот треугольникаВсе свойства высот треугольникаВсе свойства высот треугольника
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Все свойства высот треугольникаВсе свойства высот треугольникаВсе свойства высот треугольника
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Все свойства высот треугольникаВсе свойства высот треугольникаВсе свойства высот треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРАСкачать

СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРА

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Все свойства высот треугольника

Все свойства высот треугольника

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Все свойства высот треугольника

Все свойства высот треугольника

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Все свойства высот треугольника

Все свойства высот треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Все свойства высот треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Все свойства высот треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Все свойства высот треугольника

Все свойства высот треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высотСкачать

Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высот

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Все свойства высот треугольника

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Все свойства высот треугольника

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Все свойства высот треугольника

Все свойства высот треугольника

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Все свойства высот треугольника

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Все свойства высот треугольника

Тогда справедливы равенства

Все свойства высот треугольника

Все свойства высот треугольника

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Все свойства высот треугольника

Все свойства высот треугольника

что и требовалось доказать.

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Все свойства высот треугольника

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Все свойства высот треугольника

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Все свойства высот треугольника

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Все свойства высот треугольника

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Все свойства высот треугольника

Все свойства высот треугольника

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

Все свойства высот треугольника

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

🔍 Видео

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

ПЕРЕСЕЧЕНИЕ ВЫСОТ треугольника ТЕОРЕМА 8 класс АтанасянСкачать

ПЕРЕСЕЧЕНИЕ ВЫСОТ треугольника ТЕОРЕМА 8 класс Атанасян

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

ШМ. Свойства высот треугольника. Теория для сложных геометрии ОГЭ и ЕГЭ.Скачать

ШМ. Свойства высот треугольника. Теория для сложных геометрии ОГЭ и ЕГЭ.

17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

топовые факты про высоты треугольника, которые помогут на ЕГЭ #егэ2023 #математика #школа #fypСкачать

топовые факты про высоты треугольника, которые помогут на ЕГЭ #егэ2023 #математика #школа #fyp

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)Скачать

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)
Поделиться или сохранить к себе:
ФигураРисунокОписание
Остроугольный треугольникВсе свойства высот треугольника
Прямоугольный треугольникВсе свойства высот треугольника