Проекцией пирамиды не может быть окружность

Проекции прямой правильной пирамиды

Пусть требуется построить Проекции прямой правильной пирамиды высотой h, с треугольным основанием вписанным в окружность заданного диаметра. Основание пирамиды параллельно горизонтальной плоскости проекций H.

Проекцией пирамиды не может быть окружность

Построение начинаем с горизонтальной проекции прямой правильной пирамиды потому, что основание пирамиды, в данном случае, проецируются на нее без искажения: — проводим окружность радиусом R и через ее центр осевые линии; — отмечаем точку C на окружности и из центра находящегося на окружности напротив нее описываем дугу тем же радиусом R до пересечения с окружностью, где отмечаем точки A и B; — отмеченные точки соединяем прямыми линиями; — центр описанной окружности совпадает с проекцией вершины пирамиды S`; — соединяем прямыми линиями вершины пирамиды S` с вершинами A`, B`, C` основания, получая, тем самым, проекции S`A`, S`B`и S`C` боковых ребер пирамиды. Делаем графический анализ построенной проекции: — плоскость треугольника A`B`C` — это горизонтальная проекция основания пирамиды, которая является горизонтальной плоскостью уровня; — треугольники S`A`B`, S`B`C` и S`C`A` — это горизонтальные проекции боковых граней пирамиды, которые является: задняя боковая грань SAB — профильно проецирующей плоскостью, передние боковые грани SBC и SCA плоскостями общего положения.

Далее выполняем построение фронтальной Проекции прямой правильной пирамиды потому, что для этого есть все данные: — строим проекцию основания пирамиды, которое вырождается в горизонтальную прямую уровня A»B»≡ B»C»≡ C»A» ≡ x; => ABC ≡ H; — откладываем высоту пирамиды — h и находим проекцию S» вершины пирамиды; — соединяем прямыми линиями вершину пирамиды S» с вершинами A», B», C» основания, получая, тем самым, проекции S»A», S»B» и S»C» боковых ребер пирамиды. — проводим проекции нижнего и верхнего оснований параллельных плоскости H и следовательно перпендикулярных плоскости V, которые представляют прямые линии. Делаем графический анализ построенной проекции: Треугольники S»A»C» и S»C»B» — проекции передних (видимых) боковых граней пирамиды, которые представляют собой их искаженную величину. Треугольник S»A»B» — проекция задней (невидимой) грани пирамиды, представляет собой ее искаженную величину.

Далее выполняем построение профильной проекции прямой правильной пирамиды потому, что для этого есть все данные: — строим проекцию основания пирамиды, которое вырождается в горизонтальную прямую уровня A»`B»`≡ B»`C»`≡ C»`A»`≡ y; => ABC ≡ H; — соединяем прямыми линиями вершину пирамиды S»` с вершинами A»`, B»`, C»` основания, получая, тем самым, проекции S»`A»`, S»`B»` и S»`C»` боковых ребер пирамиды. Делаем графический анализ построенной проекции: — треугольник S»`A»`C»` — проекция передней (видимой) боковой грани пирамиды, которая представляют собой их искаженную величину; — треугольник S»`B»`C»` — проекция задней (невидимой) боковой грани пирамиды, которая представляют собой их искаженную величину; — S»`A»`B»` — проекция задней (невидимой) боковой грани пирамиды, которая представляют собой их искаженную величину; — профильная проекция ребра AB вырождается в точку A»` ≡ B»`, следовательно задняя боковая грань перпендикулярна плоскости W; — профильная проекция двухгранного угла при ребре AB представляют собой натуральную величину.

Видео:Пересечение многогранников. Пирамида с призматическим вырезом.Скачать

Пересечение многогранников. Пирамида с призматическим вырезом.

Проекции пирамид

Построение проекции правильной четырехугольной пирамиды начинается с построения основания, горизонтальная проекция которого представляет собой четырехугольник без искажения (рисунок 171, а). Фронтальная проекция основания — отрезок горизонтальной прямой.

Из горизонтальной проекции точки S’ (вершины, пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию вершины. Соединяя точку с точками Г‘, 2″, 3″ и 4″, получают фронтальные проекции ребер пирамиды.

Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки S’ с горизонтальными проекциями точек Г, 2‘, 3′ и 4′.

Пусть, например, дана фронтальная проекция А» точки А, расположенной на грани пирамиды 1″, S», 2″ и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через А» вспомогательную прямую, проходящую через вершину пирамиды и точку N«,

Проекцией пирамиды не может быть окружность

расположенную на ее грани. Горизонтальную проекцию N’S’ вспомогательной прямой находят, применяя линию связи. Искомая горизонтальная проекция А’ точки А находится на пересечении линии связи, проведенной из точки А» с горизонтальной проекцией N’S’ вспомогательной прямой.

Изометрическая проекция пирамиды выполняется следующим образом (рисунок 171, б).

Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — длину диагонали 24. Из точки О пересечения диагоналей проводят ось z и на ней откладывают высоту пирамиды. Вершину S соединяют с вершинами основания прямыми линиями — ребрами.

Изометрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чертежа. От начала координат О по оси х откладывают координату хА, из ее конца параллельно оси у — координату уА и из конца этой координаты параллельно оси z третью координату zA. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х откладывают координату хв и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Проекции геометрических тел с примерами и образцами выполнения

Содержание:

Формы деталей, встречающихся в технике, представляют собой сочетание различных геометрических тел или их частей.

Видео:Построение проекции пирамиды. Метод прямого треугольника.Скачать

Построение проекции пирамиды. Метод прямого треугольника.

Формы геометрических тел

Деталь любой формы можно представить как совокупность отдельных геометрических тел.

Для примера возьмем деталь (рис. 159. а) и проанализируем се форму. Мысленно разделив ее на отдельные элементы, получим следующие гео­метрические тела (рис. 159, б): 1 — усеченный прямой круговой конус с цилиндрическим отвер­стием, 2 — прямой круговой цилиндр, 3 — прямо­угольный параллелепипед, 4 — два прямоугольных параллелепипеда с цилиндрическими отверстия­ми, 5 — два полых полуцилиндра. Для выполне­ния комплексных чертежей необходимо усвоить методы проецирования отдельных геометрических тел, а также точек и линий, расположенных на поверхности этих тел.

Проекцией пирамиды не может быть окружность

Геометрические тела, ограниченные плоскими многоугольниками, называются многогранниками (рис. 160, а). Эти многоугольники называются гранями, их пересечения — ребрами. Угол, образо­ванный гранями, сходящимися в одной точке — вершине, называется многогранным углом.

Тела вращения ограничены поверхностями, которые получаются в результате вращения ка­кой-либо линии вокруг неподвижной оси (рис. 160, б и в). Линия АВ, которая при своем движении образует поверхность, называется обра­зующей. Наиболее часто встречаются такие тела вращения, как цилиндр, конус, шар, тор.

Проекцией пирамиды не может быть окружность

Видео:Пирамиды, в которых высота проходит через центр вписанной в основание окружностиСкачать

Пирамиды,  в которых высота проходит через центр вписанной в основание окружности

Проекции призм

Построение проекций правильной прямой шес­тиугольной призмы (рис. 161) начинается с выпо­лнения ее горизонтальной проекции — правильно­го шестиугольника. Из вершин этого шестиуголь­ника провопят вертикальные линии связи и строят фронтальную проекцию нижнего основания при­змы. Эта проекция изображается отрезком гори­зонтальной прямой. От этой прямой вверх откла­дывают высоту призмы и строят фронтальную проекцию верхнего основания. Затем вычерчива­ют фронтальные проекции ребер — отрезки верти­кальных прямых, равные высоте призмы. Фрон­тальные проекции передних и задних ребер совпа­дают. Горизонтальные проекции боковых граней изображаются в виде отрезков прямых. Передняя боковая грань 1243 изображается на плоскости V без искажения, а на плоскости W— в виде прямой линии. Фронтальные и профильные проекции остальных боковых граней изображаются с иска­жением.

На чертеже оси х, у и z не показывают, что делает чертеж более простым.

Проекцией пирамиды не может быть окружность

Несколько сложнее построение проекций на­клонной призмы.

Рассмотрим порядок построения проекций на­клонной шестиугольной призмы.

1. Призма, основание которой лежит на плос­кости Н, наклонена к этой плоскости под утлом α (рис. 162, а). Ребра призмы параллельны плоскос­ти V, т.е. являются фронталями.

Вначале выполняется построение горизонталь­ной проекции основания призмы, которое проеци­руется на плоскость Н без искажения (правиль­ный шестиугольник). Фронтальная проекция осно­вания представляет собой отрезок прямой, парал­лельной оси х.

Из точек 1‘, 2′, 3’ фронтальной проекции основания проводят прямые проекции ребер под углом α к оси х и на них откладывают действи­тельную длину бокового ребра призмы.

Строят фронтальную проекцию верхнего осно­вания призмы в виде отрезка прямой, равного и параллельного фронтальной проекции нижнего основания.

Из точек 1, 2, 3, 4. 5. 6 горизонтальной проек­ции нижнего основания проводят прямые — про­екции ребер — параллельно оси х и на них с по­мощью вертикальных линий связи находят шесть точек — горизонтальные проекции вершин верхне­го основания призмы.

2. Прямая правильная шестиугольная призма наклонена под углом α к плоскости Н. Основание призмы наклонено к плоскости Н под углом β (рис. 162, б).

В этом случае необходимо вначале построить фронтальную проекцию основания. Эта проекция представляет собой отрезок, равный расстоянию между параллельными сторонами шестиугольника. Если этот отрезок разделить пополам и из его середины провести линию связи, то на ней будут расположены точки 2 и 5 — горизонтальные про­екции вершин основания призмы. Расстояние между точками 2, 5 равно действительному рас­стоянию между вершинами основания призмы. Так как горизонтальные проекции сторон 16 и 34 представляют собой их действительные длины, то, воспользовавшись этим обстоятельством, мож­но построить полностью горизонтальную проек­цию основания.

Дальнейший процесс построения, показанный на рис. 162, б, аналогичен приведенному на рис. 162, а.

Проекцией пирамиды не может быть окружность

На комплексных чертежах предметов часто приходится строить проекции линий и точек, расположенных на поверхности этих тел, имея только одну проекцию линии или точки. Рассмотрим решение такой задачи.

Дан комплексный чертеж четырехугольной пря­мой призмы и фронтальная проекция а’ точки А.

Прежде всего надо отыскать на комплексном чертеже две проекции грани, на которой располо­жена точка А. На комплексном чертеже видно (рис. 163, а), что точка А лежит на грани призмы 1265. Фронтальная проекция а’ точки А лежит на фронтальной проекции 1‘2’6’5‘ грани призмы. Горизонтальная проекция 1562 этой грани — отре­зок 56. На этом отрезке и находится горизонталь­ная проекция а точки А. Профильную проекцию призмы и точки А строят, применяя линии связи.

По имеющемуся комплексному чертежу призмы можно выполнить ее изометрическую проекцию по координатам вершин. Для этого вначале строят нижнее основание призмы (рис. 163, б), а затем вертикальные ребра и верхнее основание (рис. 163, в).

По координатам т и п точки А, взятым с ком­плексного чертежа, можно построить аксономет­рическую проекцию этой точки.

Проекцией пирамиды не может быть окружность

Видео:Построение проекций пирамиды. Метод вращения.Скачать

Построение проекций пирамиды. Метод вращения.

Проекции пирамид

Построение проекций треугольной пирамиды начинается с построения основания, горизонталь­ная проекция которого представляет собой тре­угольник без искажения (рис. 164, а). фронталь­ная проекция основания — отрезок горизонталь­ной прямой.

Из горизонтальной проекции точки s (верши­ны. пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию s’ вершины. Соединяя точку s’ с точками 1‘, 2′ и 3′, получают фронтальные проекции ребер пира­миды.

Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки s с горизонтальными проекциями точек 1, 2 и 3.

Пусть, например, дана фронтальная проекция а’ точки А, расположенной на грани пирамиды 1s2, и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через а’ произвольную вспомогательную прямую и продолжим ее до пересечения с фронтальными проекциями 1’s’ и 2’s’ ребер в точках п’ и т‘. Затем проведем из точек п’ и т‘ линии связи до пересечения с горизонтальными проекциями 1s и 2s этих ребер в точках п и т. Соединив п с т, получим горизонтальную проекцию вспомогательной прямой, на которой с помощью линии связи найдем искомую горизонтальную проекцию а точки А Профильную проекцию этой точки нахо­дят по линиям связи.

Другой способ решения задачи на построение проекции точки по заданной ее проекции показан на рис. 164, б. Дана четырехугольная правильная пирамида. Через заданную фронтальную проек­цию а’ точки А проводят вспомогательную пря­мую, проходящую через вершину пирамиды и расположенную на ее грани. Горизонтальную проекцию ns вспомогательной прямой находят с помощью линии связи. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, проведенной из точки а’, с горизон­тальной проекцией ns вспомогательной прямой.

Фронтальная диметрическая проекция рассмат­риваемой пирамиды выполняется следующим образом (рис. 164, в).

Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — половину длины диагонали 24. Из точки О пере­сечения диагоналей проводят ось z и на ней от­кладывают высоту пирамиды. Вершину S соединя­ют с вершинами основания прямыми линиями — ребрами.

Фронтальную диметрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чер­тежа. От качала координат О по оси х отклады­вают координату xА, из се конца параллельно оси у — половину координаты yА и из конца этой ко­ординаты параллельно оси z — третью координату zА. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х от­кладывают координату xB и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.

Проекцией пирамиды не может быть окружность

Видео:Построение линии пересечения поверхности пирамиды с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности пирамиды с проецирующей плоскостью

Проекции цилиндров

Боковая поверхность прямого кругового цилин­дра получается вращением отрезка АВ образую­щей вокруг оси, параллельной этому отрезку. На рис. 165, а представлена изометрическая проекция цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра показано на рис. 165, б и в.

Построение начинают с изображения основания цилиндра, т.е. двух проекций окружности (рис. 165, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плос­кость без искажения. Фронтальная проекция ок­ружности представляет собой отрезок горизон­тальной прямой линии, равный диаметру окруж­ности основания.

После построения основания на фронтальной проекции проводят две очерковые (крайние) обра­зующие и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, кото­рый является фронтальной проекцией верхнего основания цилиндра (рис. 165, в).

Проекцией пирамиды не может быть окружность

Определение недостающих проекции точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном слу­чае затруднений нс вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рис. 166. а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек а’ и b вертикальные линии связи до их пересечения с окружностью в искомых точ­ках а и Ь.

Профильные проекции точек А и В строят так­же с помощью вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчи­вают, как показано на рис. 166, б.

В изометрии точки A и В строят по координа­там. Например, для построения точки В от начала координат О по оси х откладывают координату xB = n, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 1. Из этой точки параллельно оси x проводят прямую, на которой откладывают координату xB = h1 точки В.

Проекцией пирамиды не может быть окружность

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Проекции конусов

Нагляднее изображение прямого кругового ко­нуса показано на рис. 167, а. Боковая поверхность конуса получена вращением отрезка BS вокруг оси, пересекающей отрезок в точке S. Последова­тельность построения двух проекций конуса пока­зана на рис. 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основа­ния — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рис. 167, б). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рис. 167, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и по­лучают фронтальную проекцию конуса.

Проекцией пирамиды не может быть окружность

Если на поверхности конуса задана одна проек­ция точки А (например, фронтальная проекция на рис. 168, а). то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности ко­нуса и проведенной через точку А, или окружнос­ти, расположенной в плоскости, параллельной основанию конуса.

В первом случае (рис 168. а) проводят фрон­тальную проекцию saf вспомогательной обра­зующей. Пользуясь вертикальной линией связи, проведенной из точки f, расположенной на фрон­тальной проекции окружности основания, находят горизонтальную проекцию sf этой образующей, на которой с помощью линии связи, проходящей через а’, находят искомую точку а.

Во втором случае (рис. 168. б) вспомогательной линией, проходящей через точку А, будет окруж­ность. расположенная на конической поверхности и параллельная плоскости Н. Фронтальная проек­ция этой окружности изображается в виде отрезка Ь’с’ горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция а точки А на­ходится на пересечении линии связи, опущенной из точки а’, с горизонтальной проекцией вспомо­гательной окружности.

Если заданная фронтальная проекция Ь’ точки В расположена на контурной (очерко­вой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий (рис. 168. б).

В изометрической проекции точку А, находя­щуюся на поверхности конуса, строят по трем координатам (рис. 168, в): xА = n, yА = m, zА = h. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата xА = n; из конца ее параллельно оси у проведена прямая, на которой отложена координата yА = m; из конца отрезка, равного т, параллельно оси z проведена прямая, на которой отложена координата zА = h. В резуль­тате построений получим искомую точку А.

Проекцией пирамиды не может быть окружность

Видео:Построение недостающих проекции сквозного отверстия в сфереСкачать

Построение недостающих проекции сквозного отверстия в сфере

Проекции шара

На рис. 169, а изображена половина шара, сферическая поверхность этого шара образована вращением четверти окружности АВ вокруг ради­уса АО.

Проекции этой фигуры приведены на рис. 169, б. Горизонтальная проекция — окруж­ность радиуса, равного радиусу сферы, а фрон­тальная — полуокружность того же радиуса.

Если точка А расположена на сферической поверхности (рис. 169, в), то вспомогательная линия Ь’с’, проведенная через эту точку параллельно горизонтальной плоскости проекций, прое­цируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспо­могательной окружности находят с помощью ли­нии связи искомую горизонтальную проекцию а точки А.

Величина диаметра вспомогательной окружнос­ти равна фронтальной проекции Ь’с’.

Проекцией пирамиды не может быть окружность

Видео:Пирамиды и статуи из бетона? | Ученые против мифов 21-8 | Павел Селиванов, Александр СоколовСкачать

Пирамиды и статуи из бетона? | Ученые против мифов 21-8 | Павел Селиванов, Александр Соколов

Проекции кольца и тора

Поверхность кругового кольца (рис. 170, а) образована вращением образующей окружности ABCD вокруг оси ОО1.

Тор — поверхность, образованная вращением части дуги окружности, являющейся образующей, вокруг оси ОО1, расположенной в плоскости этой окружности и не проходящей через ее центр.

Проекцией пирамиды не может быть окружность

На рис. 171, а и б приведены два вида тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R, а во втором случае — больше.

В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R, располо­женных симметрично относительно фронтальной проекции оси вращения. Профильными проекция­ми тора будут окружности.

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентри­ческих окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рис. 170, б). Фронтальная проекция ограничивается справа и слева дугами полуокруж­ностей диаметра образующей окружности.

Проекцией пирамиды не может быть окружность

В случае, когда точка А лежит на поверхности кругового кольца и дана одна се проекция, для нахождения второй проекции этой точки приме­няется вспомогательная окружность, проходящая через данную точку А и расположенная на повер­хности кольца в плоскости, перпендикулярной оси кольца (рис. 172).

Если задана фронтальная проекция а’ точки А, лежащей на поверхности кольца, то для нахожде­ния ее второй проекции (в данном случае — про­фильной) через а’ проводят фронтальную проек­цию вспомогательной окружности — отрезок вер­тикальной прямой линии bc‘. Затем строят про­фильную проекцию b«с» этой окружности и на ней, применяя линию связи, находят точку а“.

Если задана профильная проекция а» точки D, расположенной на поверхности этого кольца, то для нахождения фронтальной проекции точки D через d« проводят профильную проекцию вспомо­гательной окружности радиуса O«d“. Затем через верхнюю и нижнюю точки е» f« этой окружности проводят горизонтальные линии связи до пересечения с фронтальными проекциями образующей окружности радиуса r и получают точки e и f‘. Эти точки соединяют вертикальной прямой, кото­рая представляет собой фронтальную проекцию вспомогательной окружности (она будет невиди­ма). Проводя горизонтальную линию связи из точки d« до пересечения с прямой ef ‘, получаем искомую точку d‘.

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Проекцией пирамиды не может быть окружность

Видео:Пересечение пирамиды с призмойСкачать

Пересечение пирамиды с призмой

Комплексные чертежи группы геометрических тел и моделей

Для развития пространственного воображения полезно выполнять комплексные чертежи группы геометрических тел и несложных моделей с натуры.

Наглядное изображение группы геометрических тел показано на рис. 173, а. Построение комплек­сного чертежа этой группы геометрических тел следует начинать с горизонтальной проекции, так как основания цилиндра, конуса и шестигранной пирамиды проецируются на горизонтальную плос­кость проекции без искажений. С помощью вертикальных линий связи строят фронтальную проек­цию. Профильную проекцию строят с помощью вертикальных и горизонтальных линий связи (рис. 173, б).

Проекцией пирамиды не может быть окружность

Чтобы перейти к более сложным моделям, не­обходимо усвоить построение простых комплек­сных чертежей. Проекции моделей следует распо­лагать таким образом, чтобы фронтальная проек­ция давала наиболее полное представление о фор­ме и размерах модели (рис. 174).

Проекцией пирамиды не может быть окружность

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔ Проекцией пирамиды не может быть окружность Проекцией пирамиды не может быть окружность

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🎥 Видео

Лекция 5 Задача 4Скачать

Лекция 5 Задача 4

ПЛОСКАЯ ЗЕМЛЯ ( Flat Earth Simulator )Скачать

ПЛОСКАЯ ЗЕМЛЯ ( Flat Earth Simulator )

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

[Начертательная геометрия] Замена плоскостей проекций построение пирамидыСкачать

[Начертательная геометрия] Замена плоскостей проекций построение пирамиды

Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

Аксонометрические Проекции Окружности  #черчение #окружность #проекции #изометрия

ПИРАМИДА в ИЗОМЕТРИИСкачать

ПИРАМИДА в ИЗОМЕТРИИ

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Развертка пирамидыСкачать

Развертка пирамиды

Шестиугольная пирамида.Ортогональные и изометрическая проекции.Урок31.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Шестиугольная пирамида.Ортогональные и изометрическая проекции.Урок31.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)
Поделиться или сохранить к себе: