Вертикальные углы в окружности

Вертикальные углы. Свойства вертикальных углов

Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.

Вертикальные углы в окружности

На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.

Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Свойства вертикальных углов

1. Вертикальные углы равны.

2. Две пересекающие прямые образуют две пары вертикальных углов.

Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем

Вертикальные углы в окружности, Вертикальные углы в окружности
Вертикальные углы в окружности, Вертикальные углы в окружности

Следовательно Вертикальные углы в окружности. Аналогично доказывается, что Вертикальные углы в окружности.

Видео:Вертикальные углы. 7 класс.Скачать

Вертикальные углы. 7 класс.

Задачи и решения

Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).

Вертикальные углы в окружности

Решение. Так как углы 1 и 2 вертикальны, то Вертикальные углы в окружности. Углы 1 и 4 смежные. Следовательно Вертикальные углы в окружности. Тогда

Вертикальные углы в окружностиВертикальные углы в окружности.

Углы 3 и 4 вертикальные. Тогда Вертикальные углы в окружности

Ответ. Вертикальные углы в окружности.

Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.

Решение. Из образованных четырех углов любые две или смежные, или вертикальные. Поскольку в нашей задаче сумма двух углов равна 220°, то эти углы вертикальные (так как сумма смежных углов равна 180°). Тогда каждый из этих углов равен 220°:2=110°. Смежный по отношению угла 110° , будет угол 180°-110°=70°. Следовательно остальные два угла равны 70°. Отметим, что сумма всех четырех углов равен 360°:

Вертикальные углы в окружности.

Ответ. Вертикальные углы в окружности.

Видео:7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Углы, связанные с окружностью

Вертикальные углы в окружностиВписанные и центральные углы
Вертикальные углы в окружностиУглы, образованные хордами, касательными и секущими
Вертикальные углы в окружностиДоказательства теорем об углах, связанных с окружностью

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вертикальные углы в окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вертикальные углы в окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ЗАДАЧИ смежные и вертикальные углы. Геометрия 7 класс. Готовимся к самостоятельной, контрольной.Скачать

ЗАДАЧИ смежные и вертикальные углы. Геометрия 7 класс. Готовимся к самостоятельной, контрольной.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВертикальные углы в окружности
Вписанный уголВертикальные углы в окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВертикальные углы в окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВертикальные углы в окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВертикальные углы в окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВертикальные углы в окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вертикальные углы в окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вертикальные углы в окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вертикальные углы в окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вертикальные углы в окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вертикальные углы в окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вертикальные углы в окружности

Видео:Теорема о вертикальных углахСкачать

Теорема о вертикальных углах

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВертикальные углы в окружностиВертикальные углы в окружности
Угол, образованный секущими, которые пересекаются вне кругаВертикальные углы в окружностиВертикальные углы в окружности
Угол, образованный касательной и хордой, проходящей через точку касанияВертикальные углы в окружностиВертикальные углы в окружности
Угол, образованный касательной и секущейВертикальные углы в окружностиВертикальные углы в окружности
Угол, образованный двумя касательными к окружностиВертикальные углы в окружностиВертикальные углы в окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вертикальные углы в окружности

Вертикальные углы в окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

Угол, образованный пересекающимися хордами хордами
Вертикальные углы в окружности
Формула: Вертикальные углы в окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вертикальные углы в окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вертикальные углы в окружности
Формула: Вертикальные углы в окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Вертикальные углы в окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вертикальные углы в окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Геометрия 7 класс (Урок№6 - Смежные и вертикальные углы. Аксиомы и теоремы.)Скачать

Геометрия 7 класс (Урок№6 - Смежные и вертикальные углы. Аксиомы и теоремы.)

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вертикальные углы в окружности

В этом случае справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вертикальные углы в окружности

В этом случае справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

Вертикальные углы в окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вертикальные углы в окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вертикальные углы в окружности

Вертикальные углы в окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вертикальные углы в окружности

Вертикальные углы в окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вертикальные углы в окружности

Вертикальные углы в окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вертикальные углы в окружности

Вертикальные углы в окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вертикальные углы в окружности

Вертикальные углы в окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральные и вписанные углы

Вертикальные углы в окружности

О чем эта статья:

Видео:Вертикальные углы равны (доказательство)Скачать

Вертикальные углы равны (доказательство)

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вертикальные углы в окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вертикальные углы в окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вертикальные углы в окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вертикальные углы в окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вертикальные углы в окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вертикальные углы в окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вертикальные углы в окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вертикальные углы в окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вертикальные углы в окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вертикальные углы в окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вертикальные углы в окружности

ㄥBAC + ㄥBDC = 180°

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вертикальные углы в окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вертикальные углы в окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вертикальные углы в окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🌟 Видео

Смежные углы. 7 класс.Скачать

Смежные углы. 7 класс.

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.Скачать

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.

Смежные и вертикальные углы - 7 класс геометрияСкачать

Смежные и вертикальные углы - 7 класс геометрия

Задачи: смежные и вертикальные углы. 4 задачи за 7 минут. Все о смежных и вертикальных углахСкачать

Задачи: смежные и вертикальные углы. 4 задачи за 7 минут. Все о смежных и вертикальных углах

Вертикальные и смежные углы. Геометрия 7 класс.Скачать

Вертикальные и смежные углы. Геометрия 7 класс.

Пары углов в геометрииСкачать

Пары углов в геометрии

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

СМЕЖНЫЕ и ВЕРТИКАЛЬНЫЕ УГЛЫ. §4 геометрия 7 классСкачать

СМЕЖНЫЕ и ВЕРТИКАЛЬНЫЕ УГЛЫ.  §4 геометрия 7 класс

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике
Поделиться или сохранить к себе: