Как найти расстояние между векторами когда известны их координаты

Как найти расстояние координаты вектора
Содержание
  1. Длина вектора Расстояние между двумя точками в пространстве
  2. Длина вектора в пространстве
  3. Расстояние между двумя точками в пространстве
  4. 3 комментария
  5. Векторы в пространстве и метод координат
  6. Система координат в пространстве
  7. Плоскость в пространстве задается уравнением:
  8. Как найти расстояние координаты вектора
  9. Где учитесь?
  10. Векторы в пространстве и метод координат
  11. Система координат в пространстве
  12. Плоскость в пространстве задается уравнением:
  13. Линейная алгебра для разработчиков игр
  14. Зачем нам линейная алгебра?
  15. Что такое вектор?
  16. Сложение векторов
  17. Вычитание векторов
  18. Умножение вектора на скаляр
  19. Длина вектора
  20. Расстояние
  21. Нормализация
  22. Скалярное произведение векторов
  23. Векторное произведение
  24. Базисный вектор
  25. Матрицы
  26. Трехмерные матрицы
  27. Вращение в двухмерном пространстве
  28. Трёхмерное вращение
  29. Вращение, определяемое осью и углом (Axis-angle rotation)
  30. Эйлеровские углы
  31. Вращение с помощью матриц
  32. Кватернионы
  33. 📹 Видео

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Длина вектора Расстояние между двумя точками в пространстве

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Длина вектора в пространстве

Длиной (или модулем) вектора называется расстояние между началом и концом вектора.

Длина вектора a выражается через его координаты следующей формулой:

Как найти расстояние между векторами когда известны их координаты

Пример
Длина вектора $aleft right>$ равна

Видео:Расстояние между точками по координатам.Скачать

Расстояние между точками по координатам.

Расстояние между двумя точками в пространстве

Расстояние d между точками в пространстве A1 , A2 представляется формулой

Как найти расстояние между векторами когда известны их координаты

Пример
Расстояние между точками A1 и A2

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 8

Оценок пока нет. Поставьте оценку первым.

Видео:Длина отрезкаСкачать

Длина отрезка

3 комментария

найти расстояние между точками с(-2;1;-2) д (-1;2;1) м (-1;0;2) н (1;-1;2) найти 3 вектора сд — 2 вектора мн

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Как найти расстояние между векторами когда известны их координаты

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти расстояние между векторами когда известны их координаты

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Как найти расстояние между векторами когда известны их координаты
Как найти расстояние между векторами когда известны их координаты

Длина вектора Как найти расстояние между векторами когда известны их координатыв пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Как найти расстояние между векторами когда известны их координаты

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Как найти расстояние между векторами когда известны их координаты

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Как найти расстояние между векторами когда известны их координаты

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты.

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Произведение вектора на число:

Как найти расстояние между векторами когда известны их координаты

Скалярное произведение векторов:

Как найти расстояние между векторами когда известны их координаты

Косинус угла между векторами:

Как найти расстояние между векторами когда известны их координаты

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Как найти расстояние между векторами когда известны их координаты

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты. Для этого нужны их координаты.

Как найти расстояние между векторами когда известны их координаты

Запишем координаты векторов:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

и найдем косинус угла между векторами Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты:

Как найти расстояние между векторами когда известны их координаты

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Как найти расстояние между векторами когда известны их координаты

Координаты точек A, B и C найти легко:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Из прямоугольного треугольника AOS найдем Как найти расстояние между векторами когда известны их координаты

Координаты вершины пирамиды: Как найти расстояние между векторами когда известны их координаты

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Найдем координаты векторов Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

и угол между ними:

Как найти расстояние между векторами когда известны их координаты

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Как найти расстояние между векторами когда известны их координаты

Запишем координаты точек:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Как найти расстояние между векторами когда известны их координаты

Найдем координаты векторов Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты, а затем угол между ними:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Координаты середины отрезкаСкачать

Координаты середины отрезка

Плоскость в пространстве задается уравнением:

Как найти расстояние между векторами когда известны их координаты

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Как найти расстояние между векторами когда известны их координаты

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Как найти расстояние между векторами когда известны их координаты

Подставим в него по очереди координаты точек M, N и K.

Как найти расстояние между векторами когда известны их координаты

То есть A + C + D = 0.

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Аналогично для точки K:

Как найти расстояние между векторами когда известны их координаты

Получили систему из трех уравнений:

Как найти расстояние между векторами когда известны их координаты

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Выразим C и B через A и подставим в третье уравнение:

Как найти расстояние между векторами когда известны их координаты

Решив систему, получим:

Как найти расстояние между векторами когда известны их координаты

Уравнение плоскости MNK имеет вид:

Как найти расстояние между векторами когда известны их координаты

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Как найти расстояние между векторами когда известны их координаты

Вектор Как найти расстояние между векторами когда известны их координаты— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Как найти расстояние между векторами когда известны их координатыимеет вид:

Как найти расстояние между векторами когда известны их координаты

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Как найти расстояние между векторами когда известны их координаты

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Как найти расстояние между векторами когда известны их координаты

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Как найти расстояние между векторами когда известны их координаты

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Как найти расстояние между векторами когда известны их координатыперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Как найти расстояние между векторами когда известны их координаты

Напишем уравнение плоскости AEF.

Как найти расстояние между векторами когда известны их координаты

Берем уравнение плоскости Как найти расстояние между векторами когда известны их координатыи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Как найти расстояние между векторами когда известны их координаты

Нормаль к плоскости AEF: Как найти расстояние между векторами когда известны их координаты

Найдем угол между плоскостями:

Как найти расстояние между векторами когда известны их координаты

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Как найти расстояние между векторами когда известны их координаты

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Как найти расстояние между векторами когда известны их координатыили, еще проще, вектор Как найти расстояние между векторами когда известны их координаты.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Координаты вектора Как найти расстояние между векторами когда известны их координаты— тоже:

Как найти расстояние между векторами когда известны их координаты

Находим угол между плоскостями, равный углу между нормалями к ним:

Как найти расстояние между векторами когда известны их координаты

Зная косинус угла, находим его тангенс по формуле

Как найти расстояние между векторами когда известны их координаты

Получим:
Как найти расстояние между векторами когда известны их координаты

Ответ: Как найти расстояние между векторами когда известны их координаты

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Как найти расстояние между векторами когда известны их координаты— вектор, лежащий на прямой m (или параллельный ей), Как найти расстояние между векторами когда известны их координаты— нормаль к плоскости α.

Как найти расстояние между векторами когда известны их координаты

Находим синус угла между прямой m и плоскостью α по формуле:

Как найти расстояние между векторами когда известны их координаты

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Находим координаты вектора Как найти расстояние между векторами когда известны их координаты.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Как найти расстояние между векторами когда известны их координаты.

Найдем угол между прямой и плоскостью:

Как найти расстояние между векторами когда известны их координаты

Ответ: Как найти расстояние между векторами когда известны их координаты

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Как найти расстояние между векторами когда известны их координаты

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Как найти расстояние между векторами когда известны их координаты, AD = Как найти расстояние между векторами когда известны их координаты. Высота параллелепипеда AA1 = Как найти расстояние между векторами когда известны их координаты. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Решим эту систему. Выберем Как найти расстояние между векторами когда известны их координаты

Тогда Как найти расстояние между векторами когда известны их координаты

Уравнение плоскости A1DB имеет вид:

Как найти расстояние между векторами когда известны их координаты

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Как найти расстояние между векторами когда известны их координаты

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Как найти расстояние координаты вектора

Найдем расстояние между двумя точками a и b. (длину отрезка)
По сути каждая координата точки — это вектор. Ниже будет надо будет ввести координаты векторов (точек).
Надо Вам ввести лишь размерность (допустим, если точки на плоскости, то размерность равна 2, если в пространстве, то 3) и координаты точек. А система уже сама вычислит длину отрезка (расстояние между точками).

Сервис выдаёт не только ответ, но ещё и готовое решение

Точки a(2,2,-1) и b(1,4,8), тогда число координат равно 3.

© Контрольная работа РУ — калькуляторы онлайн

Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

Где учитесь?

Для правильного составления решения, укажите:

Видео:Расстояние между точкамиСкачать

Расстояние между точками

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Как найти расстояние между векторами когда известны их координаты

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти расстояние между векторами когда известны их координаты

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Как найти расстояние между векторами когда известны их координаты
Как найти расстояние между векторами когда известны их координаты

Длина вектора Как найти расстояние между векторами когда известны их координатыв пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Как найти расстояние между векторами когда известны их координаты

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Как найти расстояние между векторами когда известны их координаты

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Как найти расстояние между векторами когда известны их координаты

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты.

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Произведение вектора на число:

Как найти расстояние между векторами когда известны их координаты

Скалярное произведение векторов:

Как найти расстояние между векторами когда известны их координаты

Косинус угла между векторами:

Как найти расстояние между векторами когда известны их координаты

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Как найти расстояние между векторами когда известны их координаты

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты. Для этого нужны их координаты.

Как найти расстояние между векторами когда известны их координаты

Запишем координаты векторов:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

и найдем косинус угла между векторами Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты:

Как найти расстояние между векторами когда известны их координаты

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Как найти расстояние между векторами когда известны их координаты

Координаты точек A, B и C найти легко:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Из прямоугольного треугольника AOS найдем Как найти расстояние между векторами когда известны их координаты

Координаты вершины пирамиды: Как найти расстояние между векторами когда известны их координаты

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Найдем координаты векторов Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

и угол между ними:

Как найти расстояние между векторами когда известны их координаты

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Как найти расстояние между векторами когда известны их координаты

Запишем координаты точек:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Как найти расстояние между векторами когда известны их координаты

Найдем координаты векторов Как найти расстояние между векторами когда известны их координатыи Как найти расстояние между векторами когда известны их координаты, а затем угол между ними:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Плоскость в пространстве задается уравнением:

Как найти расстояние между векторами когда известны их координаты

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Как найти расстояние между векторами когда известны их координаты

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Как найти расстояние между векторами когда известны их координаты

Подставим в него по очереди координаты точек M, N и K.

Как найти расстояние между векторами когда известны их координаты

То есть A + C + D = 0.

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Аналогично для точки K:

Как найти расстояние между векторами когда известны их координаты

Получили систему из трех уравнений:

Как найти расстояние между векторами когда известны их координаты

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Выразим C и B через A и подставим в третье уравнение:

Как найти расстояние между векторами когда известны их координаты

Решив систему, получим:

Как найти расстояние между векторами когда известны их координаты

Уравнение плоскости MNK имеет вид:

Как найти расстояние между векторами когда известны их координаты

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Как найти расстояние между векторами когда известны их координаты

Вектор Как найти расстояние между векторами когда известны их координаты— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Как найти расстояние между векторами когда известны их координатыимеет вид:

Как найти расстояние между векторами когда известны их координаты

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Как найти расстояние между векторами когда известны их координаты

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Как найти расстояние между векторами когда известны их координаты

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Как найти расстояние между векторами когда известны их координаты

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Как найти расстояние между векторами когда известны их координатыперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Как найти расстояние между векторами когда известны их координаты

Напишем уравнение плоскости AEF.

Как найти расстояние между векторами когда известны их координаты

Берем уравнение плоскости Как найти расстояние между векторами когда известны их координатыи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Как найти расстояние между векторами когда известны их координаты

Нормаль к плоскости AEF: Как найти расстояние между векторами когда известны их координаты

Найдем угол между плоскостями:

Как найти расстояние между векторами когда известны их координаты

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Как найти расстояние между векторами когда известны их координаты

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Как найти расстояние между векторами когда известны их координатыили, еще проще, вектор Как найти расстояние между векторами когда известны их координаты.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Координаты вектора Как найти расстояние между векторами когда известны их координаты— тоже:

Как найти расстояние между векторами когда известны их координаты

Находим угол между плоскостями, равный углу между нормалями к ним:

Как найти расстояние между векторами когда известны их координаты

Зная косинус угла, находим его тангенс по формуле

Как найти расстояние между векторами когда известны их координаты

Получим:
Как найти расстояние между векторами когда известны их координаты

Ответ: Как найти расстояние между векторами когда известны их координаты

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Как найти расстояние между векторами когда известны их координаты— вектор, лежащий на прямой m (или параллельный ей), Как найти расстояние между векторами когда известны их координаты— нормаль к плоскости α.

Как найти расстояние между векторами когда известны их координаты

Находим синус угла между прямой m и плоскостью α по формуле:

Как найти расстояние между векторами когда известны их координаты

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Находим координаты вектора Как найти расстояние между векторами когда известны их координаты.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Как найти расстояние между векторами когда известны их координаты.

Найдем угол между прямой и плоскостью:

Как найти расстояние между векторами когда известны их координаты

Ответ: Как найти расстояние между векторами когда известны их координаты

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Как найти расстояние между векторами когда известны их координаты

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Как найти расстояние между векторами когда известны их координаты, AD = Как найти расстояние между векторами когда известны их координаты. Высота параллелепипеда AA1 = Как найти расстояние между векторами когда известны их координаты. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Как найти расстояние между векторами когда известны их координаты

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Как найти расстояние между векторами когда известны их координатыКак найти расстояние между векторами когда известны их координаты

Решим эту систему. Выберем Как найти расстояние между векторами когда известны их координаты

Тогда Как найти расстояние между векторами когда известны их координаты

Уравнение плоскости A1DB имеет вид:

Как найти расстояние между векторами когда известны их координаты

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Как найти расстояние между векторами когда известны их координаты

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Видео:Расстояние между двумя точками. Координаты середины отрезка.Скачать

Расстояние между двумя точками. Координаты середины отрезка.

Линейная алгебра для разработчиков игр

Эта статья является переводом цикла из четырёх статей «Linear algebra for game developers», написанных David Rosen и посвящённых линейной алгебре и её применению в разработке игр. С оригинальными статьями можно ознакомиться тут: часть 1, часть 2, часть 3 и часть 4. Я не стал публиковать переводы отдельными топиками, а объединил все статьи в одну. Думаю, что так будет удобнее воспринимать материал и работать с ним. Итак приступим.

Зачем нам линейная алгебра?

Одним из направлений в линейной алгебре является изучение векторов. Если в вашей игре применяется позиционирование экранных кнопок, работа с камерой и её направлением, скоростями объектов, то вам придётся иметь дело с векторами. Чем лучше вы понимаете линейную алгебру, тем больший контроль вы получаете над поведением векторов и, следовательно, над вашей игрой.

Что такое вектор?

В играх вектора используются для хранения местоположений, направлений и скоростей. Ниже приведён пример двухмерного вектора:
Как найти расстояние между векторами когда известны их координаты
Вектор местоположения (также называемый «радиус-вектором») показывает, что человек стоит в двух метрах восточнее и в одном метре к северу от исходной точки. Вектор скорости показывает, что за единицу времени самолёт перемещается на три километра вверх и на два — влево. Вектор направления говорит нам о том, что пистолет направлен вправо.

Как вы можете заметить, вектор сам по себе всего лишь набор цифр, который обретает тот или иной смысл в зависимости от контекста. К примеру, вектор (1, 0) может быть как направлением для оружия, как показано на картинке, так и координатами строения в одну милю к востоку от вашей текущей позиции. Или скоростью улитки, которая двигается вправо со скоростью в 1 милю в час (прим. переводчика: довольно быстро для улитки, 44 сантиметра в секунду).

Важно отслеживать единицы измерения. Допустим у нас есть вектор V (3,5,2). Это мало что говорит нам. Три чего, пять чего? В нашей игре Overgrowth расстояния указываются в метрах, а скорости в метрах в секунду. Первое число в этом векторе — это направление на восток, второе — направление вверх, третье — направление на север. Отрицательные числа обозначают противоположные направления, на запад, вниз и на юг. Местоположение, определяемое вектором V (3,5,2), находится в трёх метрах к востоку, в пяти метрах вверху и в двух метрах к северу, как показано на картинке ниже.

Как найти расстояние между векторами когда известны их координаты

Итак, мы изучили основы работы с векторами. Теперь узнаем как вектора использовать.

Сложение векторов

Чтобы сложить вектора, нам надо просто сложить каждую их составляющую друг с другом. Например:

(0, 1, 4) + (3, -2, 5) = (0+3, 1-2, 4+5) = (3, -1, 9)

Зачем нам нужно складывать вектора? Наиболее часто сложение векторов в играх применяется для физического интегрирования. Любой физический объект будет иметь вектора для местоположения, скорости и ускорения. Для каждого кадра (обычно это одна шестидесятая часть секунды), мы должны интегрировать два вектора: добавить скорость к местоположению и ускорение к скорости.

Давайте рассмотрим пример с прыжками Марио. Он начинает с позиции (0, 0). В момент начала прыжка его скорость (1, 3), он быстро двигается вверх и вправо. Его ускорение равно (0, -1), так как гравитация тянет его вниз. На картинке показано, как выглядит его прыжок, разбитый на семь кадров. Чёрным текстом показана его скорость в каждом фрейме.

Как найти расстояние между векторами когда известны их координаты

Давайте рассмотрим первые кадры поподробнее, чтобы понять как всё происходит.

Для первого кадра, мы добавляем скорость Марио (1, 3) к его местоположению (0, 0) и получаем его новые координаты (1, 3). Затем мы складываем ускорение (0, -1) с его скоростью (1, 3) и получаем новое значение скорости Марио (1, 2).

Делаем то-же самое для второго кадра. Добавляем скорость (1, 2) к местоположению (1, 3) и получаем координаты (2, 5). Затем добавляем ускорение (0, -1) к его скорости (1, 2) и получаем новую скорость (1, 1).

Обычно игрок контролирует ускорение игрового персонажа с помощью клавиатуры или геймпада, а игра, в свою очередь, рассчитывает новые значения для скоростей и местоположения, используя физическое сложение (через сложение векторов). Это та-же задача, которая решается в интегральном исчислении, просто мы его сильно упрощаем для нашей игры. Я заметил, что мне намного проще внимательно слушать лекции по интегральному исчислению, думая о практическом его применении, которое мы только что описали.

Вычитание векторов

Вычитание рассчитывается по тому-же принципу что и сложение — вычитаем соответствующие компоненты векторов. Вычитание векторов удобно для получения вектора, который показывает из одного местоположения на другое. Например, пусть игрок находится по координатам (1, 2) с лазерным ружьём, а вражеский робот находится по координатам (4, 3). Чтобы определить вектор движения лазерного луча, который поразит робота, нам надо вычесть местоположение игрока из местоположения робота. Получаем:

(4, 3) — (1, 2) = (4-1, 3-2) = (3, 1).

Как найти расстояние между векторами когда известны их координаты

Умножение вектора на скаляр

Когда мы говорим о векторах, мы называем отдельные числа скалярами. Например (3, 4) — вектор, а 5 — это скаляр. В играх, часто бывает нужно умножить вектор на число (скаляр). Например, моделируя простое сопротивление воздуха путём умножения скорости игрока на 0.9 в каждом кадре. Чтобы сделать это, нам надо умножить каждый компонент вектора на скаляр. Если скорость игрока (10, 20), то новая скорость будет:

0.9*(10, 20) = (0.9 * 10, 0.9 * 20) = (9, 18).

Длина вектора

Если у нас есть корабль с вектором скорости V (4, 3), нам также понадобится узнать как быстро он двигается, чтобы посчитать потребность в экранном пространстве или сколько потребуется топлива. Чтобы сделать это, нам понадобится найти длину (модуль) вектора V. Длина вектора обозначается вертикальными линиями, в нашем случае длина вектора V будет обозначаться как |V|.

Мы можем представить V как прямоугольный треугольник со сторонами 4 и 3 и, применяя теорему Пифагора, получить гипотенузу из выражения: x 2 + y 2 = h 2

В нашем случае — длину вектора H с компонентами (x, y) мы получаем из квадратного корня: sqrt(x 2 + y 2 ).

Итак, скорость нашего корабля равна:

|V| = sqrt(4 2 + 3 2 ) = sqrt(25) = 5

Как найти расстояние между векторами когда известны их координаты

Этот подход используется и для трёхмерных векторов. Длина вектора с компонентами (x, y, z) рассчитывается как sqrt(x 2 + y 2 + z 2 )

Расстояние

Если игрок P находится в точке (3, 3), а взрыв произошёл в точке E по координатам (1, 2), нам надо определить расстояние между игроком и взрывом, чтобы рассчитать степень ущерба, нанесённого игроку. Это легко сделать, комбинируя две вышеописанных операции: вычитание векторов и их длину.
Мы вычитаем P — E, чтобы получить вектор между ними. А затем определяем длину этого вектора, что и даёт нам искомое расстояние. Порядок следования операндов тут не имеет значения, |E — P| даст тот-же самый результат.

Расстояние = |P — E| = |(3, 3) — (1, 2)| = |(2, 1)| = sqrt(2 2 +1 2 ) = sqrt(5) = 2.23

Как найти расстояние между векторами когда известны их координаты

Нормализация

Когда мы имеем дело с направлениями (в отличие от местоположений и скоростей), важно, чтобы вектор направления имел длину, равную единице. Это сильно упрощает нам жизнь. Например, допустим орудие развёрнуто в направлении (1, 0) и выстреливает снаряд со скоростью 20 метров в секунду. Каков в данном случае вектор скорости для выпущенного снаряда?

Так как вектор направления имеет длину равную единице, мы умножаем направление на скорость снаряда и получаем вектор скорости (20, 0). Если-же вектор направления имеет отличную от единицы длину, мы не сможем сделать этого. Снаряд будет либо слишком быстрым, либо слишком медленным.

Вектор с длиной равной единице называется «нормализованным». Как сделать вектор нормализованным? Довольно просто. Мы делим каждый компонент вектора на его длину. Если, к примеру, мы хотим нормализовать вектор V с компонентами (3, 4), мы просто делим каждый компонент на его длину, то есть на 5, и получаем (3/5, 4/5). Теперь, с помощью теоремы Пифагора, мы убедимся в том, что его длина равна единице:

(3/5) 2 + (4/5) 2 = 9/25 + 16/25 = 25/25 = 1

Скалярное произведение векторов

Что такое скалярное произведение (записывается как •)? Чтобы рассчитать скалярное произведение двух векторов, мы должны умножить их компоненты, а затем сложить полученные результаты вместе

(a1, a2) • (b1, b2) = a1b1 + a2b2

Например: (3, 2) • (1, 4) = 3*1 + 2*4 = 11. На первый взгляд это кажется бесполезным, но посмотрим внимательнее на это:

Как найти расстояние между векторами когда известны их координаты

Здесь мы можем увидеть, что если вектора указывают в одном направлении, то их скалярное произведение больше нуля. Когда они перпендикулярны друг другу, то скалярное произведение равно нулю. И когда они указывают в противоположных направлениях, их скалярное произведение меньше нуля.
В основном, с помощью скалярного произведения векторов можно рассчитать, сколько их указывает в одном направлении. И хоть это лишь малая часть возможностей скалярного произведения, но уже очень для нас полезная.

Допустим у нас есть стражник, расположенный в G(1, 3) смотрящий в направлении D(1,1), с углом обзора 180 градусов. Главный герой игры подсматривает за ним с позиции H(3, 2). Как определить, находится-ли главный герой в поле зрения стражника или нет? Сделаем это путём скалярного произведения векторов D и V (вектора, направленного от стражника к главному герою). Мы получим следующее:

V = H — G = (3, 2) — (1, 3) = (3-1, 2-3) = (2, -1)
D•V = (1, 1) • (2, -1) = 1*2 + 1*-1 = 2-1 = 1

Так как единица больше нуля, то главный герой находится в поле зрения стражника.

Как найти расстояние между векторами когда известны их координаты

Мы уже знаем, что скалярное произведение имеет отношение к определению направления векторов. А каково его более точное определение? Математическое выражение скалярного произведения векторов выглядит так:

Где Θ (произносится как «theta») — угол между векторами A и B.

Это позволяет нам найти Θ (угол) с помощью выражения:

Как я говорил ранее, нормализация векторов упрощает нашу жизнь. И если A и B нормализованы, то выражение упрощается следующим образом:

Давайте опять рассмотрим сценарий со стражником. Пусть теперь угол обзора стражника будет равен 120 градусам. Получим нормализованные вектора для направления взгляда стражника (D’) и для направления от стражника к главному герою (V’). Затем определим угол между ними. Если угол более 60 градусов (половина от угла обзора), то главный герой находится вне поля зрения стражника.

D’ = D / |D| = (1, 1) / sqrt(1 2 + 1 2 ) = (1, 1) / sqrt(2) = (0.71, 0.71)
V’ = V / |V| = (2, -1) / sqrt(2 2 + (-1) 2 ) = (2,-1) / sqrt(5) = (0.89, -0.45)

Θ = acos(D’V’) = acos(0.71*0.89 + 0.71*(-0.45)) = acos(0.31) = 72

Угол между центром поля зрения стражника и местоположением главного героя составляет 72 градуса, следовательно стражник его не видит.

Как найти расстояние между векторами когда известны их координаты

Понимаю, что это выглядит довольно сложно, но это потому, что мы всё делаем вручную. В программе это всё довольно просто. Ниже показано как я сделал это в нашей игре Overgrowth с помощью написанных мной С++ библиотек для работы с векторами:

Векторное произведение

Допустим у нас есть корабль с пушками, которые стреляют в правую и в левую стороны по курсу. Допустим, что лодка расположена вдоль вектора направления (2, 1). В каких направлениях теперь стреляют пушки?

Это довольно просто в двухмерной графике. Чтобы повернуть направление на 90 градусов по часовой стрелке, достаточно поменять местами компоненты вектора, а затем поменять знак второму компоненту.
(a, b) превращается в (b, -a). Следовательно у корабля, расположенного вдоль вектора (2, 1), пушки справа по борту будут стрелять в направлении (1, -2), а пушки с левого борта, будут стрелять в противоположном направлении. Меняем знаки у компонент вектора и получаем (-1, 2).

Как найти расстояние между векторами когда известны их координаты

А что если мы хотим рассчитать это всё для трехмерной графики? Рассмотрим пример с кораблём.
У нас есть вектор мачты M, направленной прямо вверх (0, 1, 0) и направление ветра: север-северо-восток W (1, 0, 2). И мы хотим вычислить вектор направления паруса S, чтобы наилучшим образом «поймать ветер».

Для решения этой задачи мы используем векторное произведение: S = M x W.

Как найти расстояние между векторами когда известны их координаты

Подставим теперь нужные нам значения:

S = MxW = (0, 1, 0) x (1, 0, 2) = ([1*2 — 0*0], [0*1 — 0*2], [0*0 — 1*1]) = (2, 0, -1)

Для расчётов вручную довольно сложно, но для графических и игровых приложений я рекомендую написать функцию, подобную той, что указана ниже и не вдаваться более в детали подобных расчётов.

Векторное произведение часто используется в играх, чтобы рассчитать нормали к поверхностям. Направления, в которых «смотрит» та или иная поверхность. Например, рассмотрим треугольник с векторами вершин A, B и С. Как мы найдем направление в котором «смотрит» треугольник, то есть направление перпендикулярное его плоскости? Это кажется сложным, но у нас есть инструмент для решения этой задачи.

Используем вычитание, для определения направления из A в С (C — A), пусть это будет «грань 1» (Edge 1) и направление из A в B (B — A), пусть это будет «грань 2» (Edge 2). А затем применим векторное произведение, чтобы найти вектор, перпендикулярный им обоим, то есть перпендикулярный плоскости треугольника, также называемый «нормалью к плоскости».

Как найти расстояние между векторами когда известны их координаты

Вот так это выглядит в коде:

В играх основное выражение освещённости записывается как N • L, где N — это нормаль к освещаемой поверхности, а L — это нормализованный вектор направления света. В результате поверхность выглядит яркой, когда на неё прямо падает свет, и тёмной, когда этого не происходит.

Теперь перейдем к рассмотрению такого важного для разработчиков игр понятия, как «матрица преобразований» (transformation matrix).

Для начала изучим «строительные блоки» матрицы преобразований.

Базисный вектор

Допустим мы пишем игру Asteroids на очень старом «железе» и нам нужен простой двухмерный космический корабль, который может свободно вращаться в своей плоскости. Модель корабля выглядит так:

Как найти расстояние между векторами когда известны их координаты

Как нам рисовать корабль, когда игрок поворачивает его на произвольный градус, скажем 49 градусов против часовой стрелки. Используя тригонометрию, мы можем написать функцию двухмерного поворота, которая принимает координаты точки и угол поворота, и возвращает координаты смещённой точки:

Применяя эту функцию ко всем трём точкам, мы получим следующую картину:

Как найти расстояние между векторами когда известны их координаты

Операции с синусами и косинусами работают довольно медленно, но так как мы делаем расчёты лишь для трёх точек, это будет нормально работать даже на старом «железе» (прим. переводчика: в случаях, когда предполагается интенсивное использование тригонометрических функций, для ускорения вычислений, в памяти организуют таблицы значений для каждой функции и рассчитывают их во время запуска приложения. Затем при вычислении той или иной тригонометрической функции просто производится обращение к таблице).

Пусть теперь наш корабль выглядит вот так:

Как найти расстояние между векторами когда известны их координаты

Теперь старый подход будет слишком медленным, так как надо будет поворачивать довольно большое количество точек. Одно из элегантных решений данной проблемы будет звучать так — «Что если вместо поворота каждой точки модели корабля, мы повернём координатную решётку нашей модели?»

Как найти расстояние между векторами когда известны их координаты

Как это работает? Давайте посмотрим внимательнее, что собой представляют координаты.
Когда мы говорим о точке с координатами (3, 2), мы говорим, что её местоположение находится в трех шагах от точки отсчёта по координатной оси X, и двух шагах от точки отсчёта по координатной оси Y.

По-умолчанию координатные оси расположены так: вектор координатной оси X (1, 0), вектор координатной оси Y (0, 1). И мы получим расположение: 3(1, 0) + 2(0, 1). Но координатные оси не обязательно должны быть в таком положении. Если мы повернём координатные оси, в это-же время мы повернём все точки в координатной решётке.

Чтобы получить повернутые оси X и Y мы применим тригонометрические функции, о которых говорили выше. Если мы поворачиваем на 49 градусов, то новая координатная ось X будет получена путём поворота вектора (0, 1) на 49 градусов, а новая координатная ось Y будет получена путём поворота вектора (0, 1) на 49 градусов. Итак вектор новой оси X у нас будет равен (0.66, 0.75), а вектор новой оси Y будет (-0.75, 0.66). Сделаем это вручную для нашей простой модели из трёх точек, чтобы убедиться, что это работает так, как нужно:

Координаты верхней точки (0, 2), что означает, что её новое местоположение находится в 0 на новой (повёрнутой) оси X и 2 на новой оси Y:

0*(0.66,0.75) + 2*(-0.75, 0.66) = (-1.5, 1.3)

Нижняя левая точка (-1, -1), что означает, что её новое местоположение находится в -1 на повернутой оси X, и -1 на повернутой оси Y:

-1*(0.66,0.75) + -1*(-0.75, 0.66) = (0.1, -1.4)

Нижняя правая точка (1, -1), что означает её новое местоположение находится в 1 на повернутой оси X, и -1 на повернутой оси Y

1*(0.66,0.75) + -1*(-0.75, 0.66) = (1.4, 0.1)

Как найти расстояние между векторами когда известны их координаты

Мы показали, как координаты корабля отображаются в другой координатной сетке с повернутыми осями (или «базисными векторами»). Это удобно в нашем случае, так как избавляет нас от необходимости применять тригонометрические преобразования к каждой из точек модели корабля.

Каждый раз, когда мы изменяем базисные вектора (1, 0) и (0, 1) на (a, b) и (c, d), то новая координата точки (x, y) может быть найдена с помощью выражения:

Обычно базисные вектора равны (1, 0) и (0, 1) и мы просто получаем x(1, 0) + y(0, 1) = (x, y), и нет необходимости заботиться об этом дальше. Однако, важно помнить, что мы можем использовать и другие базисные вектора, когда нам это нужно.

Матрицы

Матрицы похожи на двухмерные вектора. Например, типичная 2×2 матрица, может выглядеть так:

Когда вы умножаете матрицу на вектор, вы суммируете скалярное произведение каждой строки с вектором, на который происходит умножение. Например, если мы умножаем вышеприведённую матрицу на вектор (x, y), то мы получаем:

Будучи записанным по-другому, это выражение выглядит так:

Выглядит знакомо, не так-ли? Это в точности такое-же выражение, которые мы использовали для смены базисных векторов. Это означает, что умножая 2×2 матрицу на двухмерный вектор, мы тем самым меняем базисные вектора. Например, если мы вставим стандартные базисные вектора в (1, 0) и (0, 1) в колонки матрицы, то мы получим:

Это единичная матрица, которая не даёт эффекта, который мы можем ожидать от нейтральных базисных векторов, которые мы указали. Если-же мы повернём базисные вектора на 49-градусов, то мы получим:

Эта матрица будет поворачивать двухмерный вектор на 49 градусов против часовой стрелки. Мы можем сделать код нашей игры Asteriods более элегантным, используя матрицы вроде этой. Например, функция поворота нашего корабля может выглядеть так:

Однако, наш код будет ещё более элегантным, если мы сможем также включить в эту матрицу перемещение корабля в пространстве. Тогда у нас будет единая структура данных, которая будет заключать в себе и применять информацию об ориентации объекта и его местоположении в пространстве.

К счастью есть способ добиться этого, хоть это и выглядит не очень элегантно. Если мы хотим переместиться с помощью вектора (e, f), мы лишь включаем его в нашу матрицу преобразования:

И добавляем дополнительную единицу в конец каждого вектора, определяющего местоположение объекта, например так:

Теперь, когда мы перемножаем их, мы получаем:

(a, c, e) • (x, y, 1) + (b, d, f) • (x, y, 1) + (0, 0, 1) • (x, y, 1)

Что, в свою очередь, может быть записано как:

x(a, b) + y(c, d) + (e, f)

Теперь у нас есть полный механизм трансформации, заключённый в одной матрице. Это важно, если не принимать в расчёт элегантность кода, так как с ней мы теперь можем использовать все стандартные манипуляции с матрицами. Например перемножить матрицы, чтобы добавить нужный эффект, или мы можем инвертировать матрицу, чтобы получить прямо противоположное положение объекта.

Трехмерные матрицы

Матрицы в трехмерном пространстве работают так-же как и в двухмерном. Я приводил примеры с двухмерными векторами и матрицами, так как их просто отобразить с помощью дисплея, показывающего двухмерную картинку. Нам просто надо определить три колонки для базисных векторов, вместо двух. Если базисные вектора это (a,b,c), (d,e,f) and (g,h,i) то наша матрица будет выглядеть так:

Если нам нужно перемещение (j,k,l), то мы добавляем дополнительную колонку и строку, как говорили раньше:

И добавляем единицу [1] в вектор, как здесь:

Вращение в двухмерном пространстве

Так как в нашем случае у нас только одна ось вращения (расположенная на дисплее), единственное, что нам надо знать, это угол. Я говорил об этом ранее, упоминая, что мы можем применять тригонометрические функции для реализации функции двухмерного вращения наподобие этой:

Более элегантно это можно выразить в матричной форме. Чтобы определить матрицу, мы можем применить эту функцию к осям (1, 0) и (0, 1) для угла Θ, а затем включить полученные оси в колонки нашей матрицы. Итак, начнём с координатной оси X (1, 0). Если мы применим к ней нашу функцию, мы получим:

(1*cos(Θ) — 0*sin(Θ), 1*sin(Θ) + 0*cos(Θ)) = (cos(Θ), sin(Θ))

Затем, мы включаем координатную ось Y (0, 1). Получим:

(0*cos(Θ) — 1*sin(Θ), 0*sin(Θ) + 1*cos(Θ)) = (-sin(Θ), cos(Θ))

Включаем полученные координатные оси в матрицу, и получаем двухмерную матрицу вращения:

Применим эту матрицу к Сюзанне, мартышке из графического пакета Blender. Угол поворота Θ равен 45 градусов по часовой стрелке.

Как найти расстояние между векторами когда известны их координаты

Как видите — это работает. Но что если нам надо осуществить вращение вокруг точки, отличной от (0, 0)?
Например, мы хотим вращать голову мартышки вокруг точки, расположенной в её ухе:

Как найти расстояние между векторами когда известны их координаты

Чтобы сделать это, мы можем начать с создания матрицы перемещения (translation matrix) T, которая перемещает объект из начальной точки в точку вращения в ухе мартышки, и матрицу вращения R, для вращения объекта вокруг начальной точки. Теперь для вращения вокруг точки, расположенной в ухе, мы можем сперва переместить точку в ухе на место начальной точки, с помощью инвертирования матрицы T, записанной как T -1 . Затем, мы вращаем объект вокруг начальной точки, с помощью матрицы R, а затем применяем матрицу T для перемещения точки вращения назад, к своему исходному положению.
Ниже дана иллюстрация к каждому из описанных шагов:

Как найти расстояние между векторами когда известны их координаты

Это важный шаблон, который мы будем применять позднее — применение вращения для двух противоположных трансформаций позволяет нам вращать объект в другом «пространстве». Что очень удобно и полезно.

Теперь рассмотрим трёхмерное вращение.

Трёхмерное вращение

Вращение вокруг оси Z работает по тому-же принципу, что и вращение в двухмерном пространстве. Нам лишь нужно изменить нашу старую матрицу, добавив к ней дополнительную колонку и строку:

Применим эту матрицу к трехмерной версии Сюзанны, мартышки из пакета Blender. Угол поворота Θ пусть будет равен 45 градусов по часовой стрелке.

Как найти расстояние между векторами когда известны их координаты

То-же самое. Вращение только вокруг оси Z ограничивает нас, как насчёт вращения вокруг произвольной оси?

Вращение, определяемое осью и углом (Axis-angle rotation)

Представление вращения, определяемого осью и углом, также известно как вращение в экспоненциальных координатах, параметризованное вращением двух величин. Вектора, определяющего вращение направляющей оси (прямая линия) и угла, описывающего величину поворота вокруг этой оси. Вращение осуществляется согласно правилу правой руки.

Итак, вращение задаётся двумя параметрами (axis, angle), где axis — вектор оси вращения, а angle — угол вращения. Этот приём довольно прост и являет собой отправную точку для множества других операций вращения, с которыми я работаю. Как практически применить вращение, определяемое осью и углом?

Допустим мы имеем дело с осью вращения, показанной на рисунке ниже:

Как найти расстояние между векторами когда известны их координаты

Мы знаем как вращать объект вокруг оси Z, и мы знаем как вращать объект в других пространствах. Итак, нам лишь надо создать пространство, где наша ось вращения будет являться осью Z. И если эта ось будет осью Z, то что будет являться осями X и Y? Займемся вычислениями сейчас.

Чтобы создать новые оси X и Y нам нужно лишь выбрать два вектора, которые перпендикулярны новой оси Z и перпендикулярны друг другу. Мы уже говорили ранее о векторном умножении, которое берёт два вектора и даёт в итоге перпендикулярный им вектор.

У нас есть один вектор сейчас, это ось вращения, назовём его A. Возьмём теперь случайный другой вектор B, который находится не в том-же направлении, что и вектор A. Пусть это будет (0, 0, 1) к примеру.

Теперь мы имеем ось вращения A и случайный вектор B, мы можем получить нормаль C, через векторное произведение A и B. С перпендикулярен векторам A и B. Теперь мы делаем вектор B перпендикулярным векторам A и C через их векторное произведение. И всё, у нас есть все нужные нам оси координат.

На словах это звучит сложно, но довольно просто выглядит в коде или будучи показанным в картинках.
Ниже показано, как это выглядит в коде:

Тут показана иллюстрация для каждого шага:

Как найти расстояние между векторами когда известны их координаты

Теперь, имея информацию о новых координатных осях, мы можем составить матрицу M, включив каждую ось как колонку в эту матрицу. Нам надо убедиться, что вектор A является третьей колонкой, чтобы он был нашей новой осью координат Z.

Теперь это похоже на то, что мы делали для поворота в двухмерном пространстве. Мы можем применить инвертированную матрицу M, чтобы переместиться в новую систему координат, затем произвести вращение, согласно матрице R, чтобы повернуть объект вокруг оси Z, затем применить матрицу M, чтобы вернуться в исходное координатное пространство.

Как найти расстояние между векторами когда известны их координаты

Теперь мы можем вращать объект вокруг произвольной оси. В конце концов мы можем просто создать матрицу T = T = M -1 RM и использовать её много раз, без дополнительных усилий с нашей стороны. Есть более эффективные способы конвертирования вращений, определяемых осью и углом во вращения, определяемые матрицами. Просто описанный нами подход показывает многое из того, о чём мы говорили ранее.

Вращение, определяемое осью и углом, возможно, самый интуитивно понятный способ. Применяя его, очень легко инвертировать поворот, поменяв знак у угла, и легко интерполировать, путём интерполяции угла. Однако тут есть серьёзное ограничение, и заключается оно в том, что такое вращение не является суммирующим. То есть вы не можете комбинировать два вращения, определяемых осью и углом в третье.
Вращение, определяемое осью и углом — хороший способ для начала, но оно должно быть преобразовано во что-то другое, чтобы использоваться в более сложных случаях.

Эйлеровские углы

Эйлеровские углы представляют собой другой способ вращения, заключающийся в трёх вложенных вращениях относительно осей X, Y и Z. Вы, возможно, сталкивались с их применением в играх, где камера показывает действие от первого лица, либо от третьего лица.

Допустим вы играете в шутер от первого лица и вы повернулись на 30 градусов влево, а затем посмотрели на 40 градусов вверх. В конце-концов в вас стреляют, попадают, и, в результате удара, камера поворачивается вокруг своей оси на 45 градусов. Ниже показано вращение с помощью углов Эйлера (30, 40, 45).

Как найти расстояние между векторами когда известны их координаты

Углы Эйлера — удобное и простое в управлении средство. Но у этого способа есть два недостатка.

Первый, это вероятность возникновения ситуации под названием «блокировка оси» или «шарнирный замок» (gimbal lock). Представьте, что вы играете в шутер от первого лица, где вы можете посмотреть влево, вправо, вверх и вниз или повернуть камеру вокруг зрительной оси. Теперь представьте, что вы смотрите прямо вверх. В этой ситуации попытка взглянуть налево или направо будет аналогична попытке вращения камеры. Всё что мы можем вы этом случае, это вращать камеру вокруг своей оси, либо посмотреть вниз. Как вы можете представить, это ограничение делает непрактичным применение углов Эйлера в лётных симуляторах.

Второе — интерполяция между двумя эйлеровскими углами вращения не даёт кратчайшего пути между ними.
Например, у вас две интерполяции между двумя одинаковыми вращениями. Первая использует интерполяцию эйлеровского угла, вторая использует сферическую линейную интерполяцию (spherical linear interpolation (SLERP)), чтобы найти кратчайший путь.

Как найти расстояние между векторами когда известны их координаты

Итак, что-же больше подойдет для интерполяции вращений? Может быть матрицы?

Вращение с помощью матриц

Как мы уже говорили ранее, матрицы вращения хранят в себе информацию о трёх осях. Это означает, что интерполяция между двумя матрицами лишь линейно интерполирует каждую ось. В результате это даёт нам эффективный путь, то так-же привносит новые проблемы. Например, тут показаны два вращения и одно интерполированное полу-вращение:

Как найти расстояние между векторами когда известны их координаты

Как вы можете заметить, интерполированное вращение значительно меньше, чем любое из исходных вращений, и две оси более не перпендикулярны друг другу. Это логично, если вдуматься — середина отрезка, соединяющего любые две точки на сфере будет расположена ближе к центру сферы.

Это в свою очередь порождает известный «эффект фантика» (candy wrapper effect), при применении скелетной анимации. Ниже показана демонстрация этого эффекта на примере кролика из нашей игры Overgrowth (прим. переводчика: обратите внимание на середину туловища кролика).

Как найти расстояние между векторами когда известны их координаты

Вращение, основанное на матричных операциях, очень полезно, так как они могут аккумулировать вращения без всяких проблем, вроде блокировки оси (gimbal lock), и может очень эффективно применяться к точкам сцены. Вот почему поддержка вращения на матрицах встроена в графические карты. Для любого типа трёхмерной графики матричный формат вращения — это всегда итоговый применяемый способ.

Однако, как мы уже знаем, матрицы не очень хорошо интерполируются, и они не столь интуитивно понятны.

Итак, остался только один главный формат вращения. Последний, но тем не менее, важный.

Кватернионы

Что-же такое кватернионы? Если очень кратко, то это альтернативный вариант вращения, основанный на оси и угле (axis-angle rotation), который существует в пространстве.

Подобно матрицам они могут аккумулировать вращения, то есть вы можете составлять из них цепочку вращений, без опаски получить блокировку оси (gimbal lock). И в то-же время, в отличие от матриц, они могут хорошо интерполироваться из одного положения в другое.

Являются-ли кватернионы лучшим решением, нежели остальные способы вращений (rotation formats)?
На сегодняшний день они комбинируют все сильные стороны других способов вращений. Но у них есть два слабых места, рассмотрев которые, мы придём к выводу, что кватернионы лучше использовать для промежуточных вращений. Итак, каковы недостатки кватернионов.

Во-первых кватернионы непросто отобразить на трёхмерном пространстве. И мы вынуждены всегда реализовывать вращение более простым способом, а затем конвертировать его. Во-вторых, кватернионы не могут эффективно вращать точки, и мы вынуждены конвертировать их в матрицы, чтобы повернуть значительное количество точек.

Это означает, что вы скорее всего не начнете или не закончите серию вращений с помощью кватернионов. Но с их помощью можно реализовать промежуточные вращения более эффективно, нежели при применении любого другого подхода.

«Внутренняя кухня» механизма кватернионов не очень понятна и не интересна мне. И, возможно, не будет интересна и вам, если только вы не математик. И я советую вам найти библиотеки, которые работают с кватернионами, чтобы облегчить вам решение ваших задач с их помощью.

Математические библиотеки «Bullet» или «Blender» будут хорошим вариантом для начала.

📹 Видео

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Скалярное произведение векторов через координаты. 9 класс.Скачать

Скалярное произведение векторов через координаты. 9 класс.

Расстояние между двумя точками с заданными координатамиСкачать

Расстояние между двумя точками с заданными координатами

Расстояние между точками на координатной прямой 1 примерСкачать

Расстояние между точками на координатной прямой 1 пример

Математика 6 Расстояние между точками координатной прямойСкачать

Математика 6 Расстояние между точками координатной прямой
Поделиться или сохранить к себе: