Вертикальные углы при параллельных прямых и двух секущей

Вертикальные углы. Свойства вертикальных углов

Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.

Вертикальные углы при параллельных прямых и двух секущей

На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.

Видео:Пары углов в геометрииСкачать

Пары углов в геометрии

Свойства вертикальных углов

1. Вертикальные углы равны.

2. Две пересекающие прямые образуют две пары вертикальных углов.

Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем

Вертикальные углы при параллельных прямых и двух секущей, Вертикальные углы при параллельных прямых и двух секущей
Вертикальные углы при параллельных прямых и двух секущей, Вертикальные углы при параллельных прямых и двух секущей

Следовательно Вертикальные углы при параллельных прямых и двух секущей. Аналогично доказывается, что Вертикальные углы при параллельных прямых и двух секущей.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Задачи и решения

Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).

Вертикальные углы при параллельных прямых и двух секущей

Решение. Так как углы 1 и 2 вертикальны, то Вертикальные углы при параллельных прямых и двух секущей. Углы 1 и 4 смежные. Следовательно Вертикальные углы при параллельных прямых и двух секущей. Тогда

Вертикальные углы при параллельных прямых и двух секущейВертикальные углы при параллельных прямых и двух секущей.

Углы 3 и 4 вертикальные. Тогда Вертикальные углы при параллельных прямых и двух секущей

Ответ. Вертикальные углы при параллельных прямых и двух секущей.

Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.

Решение. Из образованных четырех углов любые две или смежные, или вертикальные. Поскольку в нашей задаче сумма двух углов равна 220°, то эти углы вертикальные (так как сумма смежных углов равна 180°). Тогда каждый из этих углов равен 220°:2=110°. Смежный по отношению угла 110° , будет угол 180°-110°=70°. Следовательно остальные два угла равны 70°. Отметим, что сумма всех четырех углов равен 360°:

Вертикальные углы при параллельных прямых и двух секущей.

Ответ. Вертикальные углы при параллельных прямых и двух секущей.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Вертикальные углы при параллельных прямых и двух секущей

Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть

Конечно, углы и , и — тоже вертикальные.

Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .

Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.

Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть

Углы и (а также и , и , и ) называются соответственными.

Соответственные углы равны, то есть

Углы и (а также и , и , и ) называют накрест лежащими.

Накрест лежащие углы равны, то есть

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.

Ты нашел то, что искал? Поделись с друзьями!

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .

Вертикальные углы при параллельных прямых и двух секущей Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.

Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.

Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .

Периметр параллелограмма — это сумма всех его сторон, то есть

2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.

Вертикальные углы при параллельных прямых и двух секущей Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, , то есть .

Углы и — односторонние при параллельных прямых и секущей, следовательно,

Видео:№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°

51. Планиметрия Вертикальные углы при параллельных прямых и двух секущейЧитать 0 мин.

Видео:№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

51.65. Углы и параллельные прямые

Взаимное расположение прямых:

  • Прямые пересекаются, у них есть одна общая точка.
  • Прямые не пересекаются, у них нет общих точек. Такие прямые называются параллельными.

При пересечении двух прямых образуются вертикальные и смежные углы.

Вертикальные углы — равны.

Вертикальные углы при параллельных прямых и двух секущей

Сумма смежных углов равна 180°.

Вертикальные углы при параллельных прямых и двух секущей

Параллельные прямые

Прямые называются параллельными, если они не пересекаются, сколько бы их не продолжать.

О параллельных прямых:

  • Если одна из пары параллельных прямых параллельна третьей прямой, то все прямые параллельны между собой.
  • На плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
  • Если две прямые на плоскости перпендикулярны третьей прямой, то они параллельны.

При пересечении двух параллельных прямых секущей образуются следующие углы:

  • внутренние накрест лежащие (4 и 5, 3 и 6) — попарно равны;
  • внешние накрест лежащие (1 и 8, 2 и 7) — попарно равны;
  • соответственные (1 и 5, 2 и 6, 3 и 7, 4 и 8) — попарно равны;
  • внутренние односторонние (3 и 5, 4 и 6) — сумма таких углов равна 180°;
  • внешние односторонние (1 и 7, 2 и 8) — сумма таких углов равна 180°.

Вертикальные углы при параллельных прямых и двух секущей

Часто для использования свойств углов, полученных при пересечении двух параллельных прямых секущей, необходимо применять дополнительные построения.

Пример: Даны углы с попарно параллельными сторонами. Что можно сказать об углах 1 и 2? Что можно сказать об углах 3 и 4?

Вертикальные углы при параллельных прямых и двух секущей

Продолжим стороны углов до пересечения:

Вертикальные углы при параллельных прямых и двух секущей

Получаем, что углы 1 и 2 равны, т. к. являются накрест лежащими при параллельных прямых.

Сумма углов 3 и 4 равна 180°, т. к. они являются односторонними при параллельных прямых.

Теорема Фалеса: При пересечении сторон угла параллельными прямыми стороны угла делятся на пропорциональные отрезки (образуются подобные треугольники).

🎬 Видео

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Углы, образованные параллельными прямыми и секущейСкачать

Углы, образованные параллельными прямыми и секущей

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | Инфоурок

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углы

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Углы при параллельных и секущей #математика #огэматематика #огэ #данирСкачать

Углы при параллельных и секущей #математика #огэматематика #огэ #данир
Поделиться или сохранить к себе: