Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников. Вернуться к Списку уроков Тематического планирования.
- Урок 32. Отношение площадей подобных треугольников
- I. Организационный момент
- II. Актуализация знаний учащихся. Мотивация к учебной деятельности
- 1. Теоретический опрос.
- 2. Проверка домашнего задания.
- 3. Работа по индивидуальным карточкам.
- III. Работа по теме урока
- IV. Закрепление изученного материала
- V. Самостоятельная работа
- I уровень сложности
- II уровень сложности
- III уровень сложности
- VI. Рефлексия учебной деятельности
- Найти отношение площади треугольника
- Отношение площадей подобных треугольников
- 📺 Видео
Видео:Задача по геометрии № 25 ОГЭ на отношение площадейСкачать
Урок 32. Отношение площадей
подобных треугольников
Основные дидактические цели урока: закрепить понятия пропорциональных отрезков и подобных треугольников; совершенствовать навыки решения задач на применение свойства биссектрисы треугольника и определения подобных треугольников; рассмотреть теорему об отношении площадей подобных треугольников и показать ее применение в процессе решения задач.
Ход урока
I. Организационный момент
(Учитель сообщает тему урока, формулирует цели урока.)
II. Актуализация знаний учащихся. Мотивация к учебной деятельности
1. Теоретический опрос.
(Один ученик оформляет доказательство теоремы на доске.)
1) Ответить на вопросы 1—3 учебника.
2) Доказать свойство биссектрисы треугольника.
2. Проверка домашнего задания.
(Учитель проверяет решение задач № 538, 542. Два ученика готовят решение на доске.)
Задача № 538
- В каком отношении биссектриса AD треугольника АВС делит сторону ВСР.
- Что можно сказать об отношении отрезков АВ и АС?
- Составьте уравнение, используя отношение отрезков АВ и АС и значение периметра треугольника АВС.
Задача № 542
- Какие треугольники называются подобными?
- Чему равно отношение сходственных сторон MN и ВС, KN и AC?
- Чему равны стороны треугольника KMN?
3. Работа по индивидуальным карточкам.
(3—6 учеников работают по карточкам.)
I уровень сложности
- Треугольники KPF и ЕМТ подобны, причем КР : ME = PF : МТ = КЕ : ЕТ, ∠F = 30°, ∠Е = 49°. Найдите остальные углы этих треугольников.
- Биссектриса BD делит сторону АС треугольника АВС на отрезки AD и CD, равные соответственно 7 см и 10,5 см. Найдите периметр треугольника АВС, если известно, что АВ = 9 см.
II уровень сложности
- ΔВВС подобен ΔАВС (рис. 7.3), AD = 16 см, DC = 9 см. ∠ABC и ∠BDA — тупые. Найдите ВС.
- Периметр треугольника равен 70 см, две его стороны равны 24 см и 32 см. Найдите отрезки, на которые биссектриса треугольника делит его третью сторону.
III уровень сложности
- Диагональ АС делит трапецию ABCD на два подобных треугольника АВС и ACD, ВС = 8 см, AD = 18 см. Найдите АС.
- В равнобедренном треугольнике точка Е — середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите отношение, в котором прямая BE делит отрезок АК.
- Решение задач по готовым чертежам для подготовки к восприятию нового материала (работа в парах).
Ответы и указания к задачам по готовым чертежам:
(После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания:
- оценка «5» — правильно решены три-четыре задачи;
- оценка «4» — правильно решены две задачи;
- оценка «3» — правильно решена одна задача;
- оценка «2» — не ставится.
III. Работа по теме урока
(Учитель делит класс на группы для решения задания творческого характера. После завершения работы заслушиваются и обсуждаются варианты решений.)
Задание. Треугольники АВС и А1В1С1 подобны с коэффициентом подобия k. Найти отношение их площадей.
Вывод. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
IV. Закрепление изученного материала
- Работа в рабочих тетрадях. Решить задачу № 54. (Учащиеся самостоятельно решают задачу, по окончании работы один ученик вслух читает задачу и ее решение. Учащиеся его слушают, а затем исправляют ошибки.)
- Решить задачу № 545 (работа в парах). (После завершения работы заслушиваются и обсуждаются варианты решений.)
Задача № 545
Вопросы для обсуждения.
- Чему равно отношение площадей подобных треугольников, если их сходственные стороны относятся как 6 : 5?
- Верно ли составлено уравнение исходя из условий задачи?
- Решить задачи № 547, 548 (работа в группах). (После завершения работы заслушиваются и обсуждаются варианты решений.)
V. Самостоятельная работа
I уровень сложности
II уровень сложности
III уровень сложности
VI. Рефлексия учебной деятельности
- Какие треугольники называются подобными?
- Сформулируйте свойство биссектрисы треугольника.
- Что можно сказать о площадях подобных треугольников?
Домашнее задание
- П. 60, вопросы 4 (учебник, с. 158).
- Решить задачи № 543, 544, 546, 549.
- Решить дополнительные задачи.
I уровень сложности: В подобных треугольниках АВС и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠AX = 30°. Найдите ВС, ∠K; отношение площадей треугольников AВС и KMN; АЕ и BE, если известно, что СЕ — биссектриса треугольника АВС, АВ = 3,5 см.
II уровень сложности: В прямоугольном треугольнике ABC ∠C = 90°, ∠B = 30°, АВ = 12 см, CD — высота. Докажите, что ΔACD подобен ΔАВС, найдите отношение их площадей и отрезки, на которые биссектриса угла А делит катет ВС.
Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников.
Видео:Площади треугольников с равным углом.Скачать
Найти отношение площади треугольника
В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.
Основные свойства площадей.
Свойство №1
Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.
Свойство №2
Рассмотрим отношение площадей этих треугольников $$frac<S_><S_>= frac<frac cdot a cdot h_><frac cdot b cdot h_>$$.
Упростив, получим $$frac<S_><S_>= frac$$.
Свойство №3 Если два треугольника имеют общий | Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$frac<S_><S_> = frac<frac cdot AB cdot BC cdot sin B><frac cdot MB cdot NB cdot sin B>= frac = k^$$ . |
Медиана треугольника делит его на две равновеликие части.
Свойство №6
Медианы треугольника делят его на три равновеликие части.
Средние линии треугольника площади S отсекают от него треугольники площади .