Найти отношение площади треугольника

Найти отношение площади треугольника

Найти отношение площади треугольникаНайти отношение площади треугольникаНайти отношение площади треугольникаНайти отношение площади треугольника

Найти отношение площади треугольника

Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников. Вернуться к Списку уроков Тематического планирования.

Видео:Задача по геометрии № 25 ОГЭ на отношение площадейСкачать

Задача по геометрии № 25 ОГЭ на отношение площадей

Урок 32. Отношение площадей
подобных треугольников

Основные дидактические цели урока: закрепить понятия пропорциональных отрезков и подобных треугольников; совершенствовать навыки решения задач на применение свойства биссектрисы треугольника и определения подобных треугольников; рассмотреть теорему об отношении площадей подобных треугольников и показать ее применение в процессе решения задач.

Ход урока

I. Организационный момент

(Учитель сообщает тему урока, формулирует цели урока.)

II. Актуализация знаний учащихся. Мотивация к учебной деятельности

1. Теоретический опрос.

(Один ученик оформляет доказательство теоремы на доске.)
1) Ответить на вопросы 1—3 учебника.
2) Доказать свойство биссектрисы треугольника.

2. Проверка домашнего задания.

(Учитель проверяет решение задач № 538, 542. Два ученика готовят решение на доске.)

Задача № 538

Найти отношение площади треугольника

  • В каком отношении биссектриса AD треугольника АВС делит сторону ВСР.
  • Что можно сказать об отношении отрезков АВ и АС?
  • Составьте уравнение, используя отношение отрезков АВ и АС и значение периметра треугольника АВС.

Задача № 542

Найти отношение площади треугольника

  • Какие треугольники называются подобными?
  • Чему равно отношение сходственных сторон MN и ВС, KN и AC?
  • Чему равны стороны треугольника KMN?

3. Работа по индивидуальным карточкам.

(3—6 учеников работают по карточкам.)

I уровень сложности

  1. Треугольники KPF и ЕМТ подобны, причем КР : ME = PF : МТ = КЕ : ЕТ, ∠F = 30°, ∠Е = 49°. Найдите остальные углы этих треугольников.
  2. Биссектриса BD делит сторону АС треугольника АВС на отрезки AD и CD, равные соответственно 7 см и 10,5 см. Найдите периметр треугольника АВС, если известно, что АВ = 9 см.

II уровень сложности

  1. ΔВВС подобен ΔАВС (рис. 7.3), AD = 16 см, DC = 9 см. ∠ABC и ∠BDA — тупые. Найдите ВС.
  2. Периметр треугольника равен 70 см, две его стороны равны 24 см и 32 см. Найдите отрезки, на которые биссектриса треугольника делит его третью сторону.

Найти отношение площади треугольника

III уровень сложности

  1. Диагональ АС делит трапецию ABCD на два подобных треугольника АВС и ACD, ВС = 8 см, AD = 18 см. Найдите АС.
  2. В равнобедренном треугольнике точка Е — середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите отношение, в котором прямая BE делит отрезок АК.
  3. Решение задач по готовым чертежам для подготовки к восприятию нового материала (работа в парах).

Найти отношение площади треугольника

Найти отношение площади треугольника

Ответы и указания к задачам по готовым чертежам:

Найти отношение площади треугольника

(После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания:

  • оценка «5» — правильно решены три-четыре задачи;
  • оценка «4» — правильно решены две задачи;
  • оценка «3» — правильно решена одна задача;
  • оценка «2» — не ставится.

III. Работа по теме урока

(Учитель делит класс на группы для решения задания творческого характера. После завершения работы заслушиваются и обсуждаются варианты решений.)

Задание. Треугольники АВС и А1В1С1 подобны с коэффициентом подобия k. Найти отношение их площадей.

Найти отношение площади треугольника

Вывод. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

IV. Закрепление изученного материала

  1. Работа в рабочих тетрадях. Решить задачу № 54. (Учащиеся самостоятельно решают задачу, по окончании работы один ученик вслух читает задачу и ее решение. Учащиеся его слушают, а затем исправляют ошибки.)
  2. Решить задачу № 545 (работа в парах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Задача № 545

Найти отношение площади треугольника

Вопросы для обсуждения.

  • Чему равно отношение площадей подобных треугольников, если их сходственные стороны относятся как 6 : 5?
  • Верно ли составлено уравнение исходя из условий задачи?
  1. Решить задачи № 547, 548 (работа в группах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Найти отношение площади треугольника

V. Самостоятельная работа

I уровень сложности

Найти отношение площади треугольника

II уровень сложности

Найти отношение площади треугольника

III уровень сложности

Найти отношение площади треугольника

VI. Рефлексия учебной деятельности

  1. Какие треугольники называются подобными?
  2. Сформулируйте свойство биссектрисы треугольника.
  3. Что можно сказать о площадях подобных треугольников?

Домашнее задание

  1. П. 60, вопросы 4 (учебник, с. 158).
  2. Решить задачи № 543, 544, 546, 549.
  3. Решить дополнительные задачи.

I уровень сложности: В подобных треугольниках АВС и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠AX = 30°. Найдите ВС, ∠K; отношение площадей треугольников AВС и KMN; АЕ и BE, если известно, что СЕ — биссектриса треугольника АВС, АВ = 3,5 см.

II уровень сложности: В прямоугольном треугольнике ABC ∠C = 90°, ∠B = 30°, АВ = 12 см, CD — высота. Докажите, что ΔACD подобен ΔАВС, найдите отношение их площадей и отрезки, на которые биссектриса угла А делит катет ВС.

Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников.

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Найти отношение площади треугольника

В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.

Основные свойства площадей.

Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.Найти отношение площади треугольникаДоказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = frac cdot a cdot h$$, то $$S_ = S_ = frac cdot AC cdot h$$.

Свойство №2

Найти отношение площади треугольникаДоказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b.
Рассмотрим отношение площадей этих треугольников $$frac<S_><S_>= frac<frac cdot a cdot h_><frac cdot b cdot h_>$$.
Упростив, получим $$frac<S_><S_>= frac$$.

Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .

Свойство №4

Отношение площадей подобных треугольников равны квадрату коэффициента подобия.

Свойство №3

Если два треугольника имеют общий
угол, то их площади относятся как произведение сторон, заключающих
этот угол.

Найти отношение площади треугольникаНайти отношение площади треугольникаДоказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$frac<S_><S_> = frac<frac cdot AB cdot BC cdot sin B><frac cdot MB cdot NB cdot sin B>= frac = k^$$ .

Медиана треугольника делит его на две равновеликие части.

Найти отношение площади треугольникаДоказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = fracAC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = fraccdot a cdot h$$. Получим $$S_ = fraccdot AM cdot h$$ и $$S_ = fraccdot MC cdot h$$. Значит $$S_ = S_$$.

Свойство №6

Медианы треугольника делят его на три равновеликие части.Найти отношение площади треугольникаДоказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .

Средние линии треугольника площади S отсекают от него треугольники площади .

Найти отношение площади треугольникаДоказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = frac cdot NM cdot h_= frac(frac cdot AC)(fraccdot h) = fraccdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .

Медианы треугольника делят его на 6 равновеликих частей.

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Отношение площадей подобных треугольников

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Найти отношение площади треугольника

На данном уроке мы введем понятие подобных треугольников и рассмотрим теорему об отношении их площадей. Затем будет рассмотрен ряд примеров на применение этой теоремы.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение»

📺 Видео

Отношение площадей треугольниковСкачать

Отношение площадей треугольников

9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Отношение площадей треугольников с равным угломСкачать

Отношение площадей треугольников с равным углом

Найти отношение площади треугольника к площади квадратаСкачать

Найти отношение площади треугольника к площади квадрата

Геометрия 8 класс : Отношение площадей подобных треугольниковСкачать

Геометрия 8 класс : Отношение площадей подобных треугольников

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

60. Отношение площадей подобных треугольниковСкачать

60. Отношение площадей подобных треугольников

Задание 24 Отношение площадей 3 способа решенияСкачать

Задание 24 Отношение площадей 3 способа решения

#57. Отношение площадей треугольников — самые надежные отношения!Скачать

#57. Отношение площадей треугольников — самые надежные отношения!

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)

Математика ОГЭ Задание 26 Отношение площадейСкачать

Математика ОГЭ  Задание 26 Отношение площадей

Сможешь найти площадь треугольника? Задача про отношение площадейСкачать

Сможешь найти площадь треугольника? Задача про отношение площадей

100. Теорема о площади треугольникаСкачать

100. Теорема о площади треугольника

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадьСкачать

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадь

Геометрия 8 класс (Урок№14 - Определение подобных треугольников. Отношение площадей подобных фигур.)Скачать

Геометрия 8 класс (Урок№14 - Определение подобных треугольников. Отношение площадей подобных фигур.)

Отношение площадей подобных треугольников.Скачать

Отношение площадей подобных треугольников.
Поделиться или сохранить к себе: