Векторы заданы своими координатами в ортонормированном базисе

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a, b, c и d . Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 — β*2 — γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b — 3/2c

Пример №2 . Даны векторы Векторы заданы своими координатами в ортонормированном базисе. Показать, что векторы Векторы заданы своими координатами в ортонормированном базисеобразуют базис трехмерного пространства и найти координаты вектора Векторы заданы своими координатами в ортонормированном базисев этом базисе:

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х»1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х»2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х»3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х»1, x»2, x»3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х»1 = — x’1 + 3x’2 — 2x’3,
х’2 = 6x1 + 7x2 + x3, х»2 = — 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х»3 = 3x’1 — 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

A =
435
671
918

B =
-13-2
-412
3-45

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 — 1*1) — 6*(3*8 — 1*5) + 9*(3*1 — 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55-19-32
-39-1326
-572310

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55-19-32
-39-1326
-572310
*
-13-2
-412
3-45
=
75 /182-1 46 /911 9 /13
-13 /141 2 /7-1
5 /1821 3 /91-1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (Векторы заданы своими координатами в ортонормированном базисе, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид Векторы заданы своими координатами в ортонормированном базисе Векторы заданы своими координатами в ортонормированном базисе
Решим полученную систему уравнений.

Видео:Координаты в новом базисеСкачать

Координаты в новом базисе

Проекция вектора на ось. Скалярное произведение векторов

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

По этой ссылке вы найдёте полный курс лекций по математике:

Рассмотрим на оси / ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси I называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси и со знаком «-», если эти направления противоположны. Рассмотрим теперь произвольный вектор , определяемый связанным вектором АВ.

Опуская из его начала и конца перпендикуляры на заданную ось I, построим на ней направленный отрезок CD (рис. 24). Определение. Проекцией вектора АВ на ось I называется величина направленного отрезка CD, построенного указанным выше способом. Основные свойства проекций 1. Проекция вектора АВ на какую-либо ось I равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25) 2.

Проекция суммы векторов на какую-либо ось J равна сумме проекций векторов на ту же ось. Например, (рис.26). §5. Скалярное произведение векторов Пусть имеем два вектора а и I». Определение. Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а,Ь) и определяемое равенством где или в иной записи (а, !>), есть угол между векторами а и b (рис. 27 а).

Заметив, что (b| cosy> есть проекция вектора b на направление вектора а, можем написать (рис. 27 6) и,аналогично, (рис.27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или Ь — нулевой, будем считать, что Проекция вектора на ось.

Скалярное произведение векторов 5.1.

Свойства скалярного произведения 1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и Ь ортогональны, a J.h. Это следует из формулы (1), определяющей скалярное произведение. Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так: 2.

Скалярное произведение коммутативно: Справедливость утверждении вытекает из формулы (I), если учесть четность функции 3. Скалярное произведение обладает распределительным свойством относительно сложения: 4 Действительно, 4. Числовой множитель Л можно выносить за знак скалярного произведения « Действительно, пусть А > 0. Тогда поскольку при A > 0 углы (aj>) и (Аа, h) равны (рис.28). Аналогично рассматривается случай . При 0 свойство 4 очевидно. Замечание. В обшем случае ). 5.2.

Возможно вам будут полезны данные страницы:

Скалярное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в ортонор миро ванном базисе Рассмотрим скалярное произведение векторов и и Ь: Проекция вектора на ось. Скалярное произведение векторов Пользуясь распределительным свойством скалярного произведения, находим Учитывая, что Тоесть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат. Пример.

Найти скалярное произведение векторов

Скалярное произведение вектора на себя называется скалярным квадратом: Применяя формулу (4) при b =а, найдем С другой стороны, так что из (5) следует, что — в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат. 5.3. Косинус угла между векторами. Направляющие косинусы Согласно определению где —угол между векторами а и Ь. Из этой формулы получаем (предполагается, что векторы а и b — ненулевые). Пусть .

Тогда формула (7) примет следующий вид cos Пример. Найти угол между векторами Пользуясь формулой (8), находом Пусть b = i, т.е. b = . Тогда для всякого вектора О имеем Проекция вектора на ось. Скалярное произведение векторов или, в координатной записи, где q есть угол, образованный вектором а с осью Ох.

Аналогично получаем формулы Формулы (9)-(l 1) определяют направляющие косинусы вектора а, т.е. косинусы углов, образуемых вектором а с осями координат (рис. 29). Пример. Найти координаты единичного вектора . По условию |п°| = I. Пусть Тогда (n°,k)=sz = cos 7. Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат: Проекция вектора на ось. Скалярное произведение векторов Отсюда получаем Пример. Пусть единичный вектор п° ортогонален оси г: (рис.30). Тогда его координаты х и у соответственно равны Тем самым.

Присылайте задания в любое время дня и ночи в ➔ Векторы заданы своими координатами в ортонормированном базисеВекторы заданы своими координатами в ортонормированном базисе

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Вывод формулы скалярного произведения векторов, заданных координатами в ортонормированном базисе.Скачать

Вывод формулы скалярного произведения векторов, заданных координатами в ортонормированном базисе.

Система координат. Ортонормированный базис. Длина вектора в ортонормированном базисе.

Дата добавления: 2015-09-15 ; просмотров: 7036 ; Нарушение авторских прав

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор Векторы заданы своими координатами в ортонормированном базисеназовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то Векторы заданы своими координатами в ортонормированном базисе= (x2 – x1, y2 – y1, z2 – z1).

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

Пример. Даны векторы Векторы заданы своими координатами в ортонормированном базисе(1; 2; 3), Векторы заданы своими координатами в ортонормированном базисе(-1; 0; 3), Векторы заданы своими координатами в ортонормированном базисе(2; 1; -1) и Векторы заданы своими координатами в ортонормированном базисе(3; 2; 2) в некотором базисе. Показать, что векторы Векторы заданы своими координатами в ортонормированном базисе, Векторы заданы своими координатами в ортонормированном базисеи Векторы заданы своими координатами в ортонормированном базисеобразуют базис и найти координаты вектора Векторы заданы своими координатами в ортонормированном базисев этом базисе.

Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

Векторы заданы своими координатами в ортонормированном базиселинейно независимы.

Тогда Векторы заданы своими координатами в ортонормированном базисе.

Это условие выполняется, если определитель матрицы системы отличен от нуля.

Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисеВекторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисеДля решения этой системы воспользуемся методом Крамера.

D1 = Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе;

D2 = Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

D3 = Векторы заданы своими координатами в ортонормированном базисе

Векторы заданы своими координатами в ортонормированном базисе

Итого, координаты вектора Векторы заданы своими координатами в ортонормированном базисев базисе Векторы заданы своими координатами в ортонормированном базисе, Векторы заданы своими координатами в ортонормированном базисе, Векторы заданы своими координатами в ортонормированном базисе: Векторы заданы своими координатами в ортонормированном базисе.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то Векторы заданы своими координатами в ортонормированном базисе.

  1. Деление вектора в заданном отношении. Операции над векторами, заданными своими координатами.

Если точка М(х, у, z) делит отрезок АВ в соотношении l/m, то координаты этой точки определяются как:

Векторы заданы своими координатами в ортонормированном базисе

В частном случае координаты середины отрезка находятся как:

Линейные операции над векторами в координатах.

🔥 Видео

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Векторное произведение: определение, свойства, вычисление в ортонормированном базисе.Скачать

Векторное произведение: определение, свойства, вычисление в ортонормированном базисе.

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

§48 Ортонормированный базис евклидова пространстваСкачать

§48 Ортонормированный базис евклидова пространства

Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Коллинеарность векторовСкачать

Коллинеарность векторов

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

§19 Выражение смешанного произведения через координатыСкачать

§19 Выражение смешанного произведения через координаты

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Скалярное произведение векторов через координаты. 9 класс.Скачать

Скалярное произведение векторов через координаты. 9 класс.

Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика
Поделиться или сохранить к себе: