Вектор равнодействующей всех сил действующих на материальную точку

Видео:На рисунке показаны силы, действующие на материальную точку - №22731Скачать

На рисунке показаны силы, действующие на материальную точку - №22731

Формула равнодействующей всех сил

Первый закон Ньютона говорит нам о том, что в инерциальных системах отсчета тела могут изменять скорость только, если на них оказывают воздействие другие тела. При помощи силы ($overline$) выражают взаимное действие тел друг на друга. Сила способна изменить величину и направление скорости тела. $overline$ — это векторная величина, то есть она обладает модулем (величиной) и направлением.

Видео:Равнодействующая и сложение силСкачать

Равнодействующая и сложение сил

Определение и формула равнодействующей всех сил

В классической динамике основным законом, с помощью которого находят направление и модуль равнодействующей силы является второй закон Ньютона:

На тело могут действовать не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы. Пусть на тело оказывают действие в один и тот же момент времени несколько сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Силы, которые оказывают действие на тело, следует суммировать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

Формула (2) — это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена как вектор ускорения тела.

Видео:На рисунке показаны силы, действующие на материальную точку. Определите модуль - №22724Скачать

На рисунке показаны силы, действующие на материальную точку. Определите модуль - №22724

Основной закон динамики поступательного движения при наличии нескольких сил

Если на тело действуют несколько сил, тогда второй закон Ньютона записывают как:

$overline=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета скорость движения тела постоянна.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Видео:Сложение сил, действующих на тело вдоль одной прямой. 7 класс.Скачать

Сложение сил, действующих на тело вдоль одной прямой. 7 класс.

Примеры задач на равнодействующую сил

Задание. На материальную точку действуют две силы, направленные под углом $alpha =60^circ $ друг к другу. Чему равна равнодействующая этих сил, если $F_1=20 $Н; $F_2=10 $Н?

Решение. Сделаем рисунок.

Вектор равнодействующей всех сил действующих на материальную точку

Силы на рис. 1 складываем по правилу параллелограмма. Длину равнодействующей силы $overline$ можно найти, используя теорему косинусов:

Вычислим модуль равнодействующей силы:

[F=sqrt<^2+^2+2cdot 20cdot 10<cos (60^circ ) >>approx 26,5 left(Нright).]

Ответ. $F=26,5$ Н

Задание. На материальную точку действуют силы (рис.2). Какова равнодействующая этих сил?

Вектор равнодействующей всех сил действующих на материальную точку

Решение. Равнодействующая сил, приложенных к точке (рис.2) равна:

Вектор равнодействующей всех сил действующих на материальную точку

Найдем равнодействующую сил $<overline>_1$ и $<overline>_2$. Эти силы направлены вдоль одной прямой, но в противоположные стороны, следовательно:

Так как $F_1>F_2$, то сила $<overline>_$ направлена в туже сторону, что и сила $<overline>_1$.

Найдем равнодействующую сил $<overline>_3$ и $<overline>_4$. Данные силы направлены вдоль одной вертикальной прямой (рис.1), значит:

Направление силы $<overline>_$ совпадает с направлением вектора $<overline>_3$, так как $<overline>_3><overline>_4$.

Равнодействующую, которая действует на материальную точку, найдем как:

Силы $<overline>_$ и $<overline>_$ взаимно перпендикулярны. Найдем длину вектора $overline$ по теореме Пифагора:

Видео:ЕГЭ физика .2 задание #8418Скачать

ЕГЭ физика .2 задание #8418

Законы сложения сил в механике

При воздействии на одно тело нескольких сил одновременно тело начинает двигаться с ускорением, являющимся векторной суммой ускорений, которые бы возникли под воздействием каждой силы по отдельности. К действующим на тело силам, приложенным к одной точке, применяется правило сложения векторов.

Векторная сумма всех сил, одновременно воздействующих на тело, это сила равнодействующая, которая определяется по правилу векторного сложения сил:

R → = F 1 → + F 2 → + F 3 → + . . . + F n → = ∑ i = 1 n F i → .

Равнодействующая сила действует на тело также, как и сумма всех действующих на него сил.

Видео:Урок 38 (осн). Сложение сил, направленных по одной прямой. РавнодействующаяСкачать

Урок 38 (осн). Сложение сил, направленных по одной прямой. Равнодействующая

Правило параллелограмма и правило многоугольника

Для сложения 2 -х сил используют правило параллелограмма (рисунок 1 ).

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 1 . Сложение 2 -х сил по правилу параллелограмма

Выведем формулу модуля равнодействующей силы с помощью теоремы косинусов:

R → = F 1 → 2 + F 2 → 2 + 2 F 1 → 2 F 2 → 2 cos α

При необходимости сложения более 2 -х сил используют правило многоугольника: от конца
1 -й силы необходимо провести вектор, равный и параллельный 2 -й силе; от конца 2 -й силы необходимо провести вектор, равный и параллельный 3 -й силе и т.д.

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 2 . Сложение сил правилом многоугольника

Конечный вектор, проведенный от точки приложения сил в конец последней силы, по величине и направлению равняется равнодействующей силе. Рисунок 2 наглядно иллюстрирует пример нахождения равнодействующей сил из 4 -х сил: F 1 → , F 2 → , F 3 → , F 4 → . Причем суммируемые векторы совсем необязательно должны быть в одной плоскости.

Результат действия силы на материальную точку будет зависеть только от ее модуля и направления. У твердого тела есть определенные размеры. Потому силы с одинаковыми модулями и направлениями вызывают разные движения твердого тела в зависимости от точки приложения.

Линией действия силы называют прямую, проходящую через вектор силы.

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 3 . Сложение сил, приложенных к различным точкам тела

Если силы приложены к различным точкам тела и действуют не параллельно по отношению друг к другу, тогда равнодействующая приложена к точке пересечения линий действия сил (рисунок 3 ). Точка будет находиться в равновесии, если векторная сумма всех сил, действующих на нее, равняется 0 : ∑ i = 1 n F i → = 0 → . В данном случае равняется 0 и сумма проекций данных сил на любую координатную ось.

Видео:4.3 Формула определения равнодействующей силыСкачать

4.3 Формула определения равнодействующей силы

Разложение вектора силы по направлениям

Разложение сил на две составляющие – это замена одной силы 2 -мя, приложенными в той же точке и производящими на тело такое же действие, как и эта одна сила. Разложение сил осуществляется, как и сложение, правилом параллелограмма.

Задача разложения одной силы (модуль и направление которой заданы) на 2 , приложенные в одной точке и действующие под углом друг к другу, имеет однозначное решение в следующих случаях, когда известны:

  • направления 2 -х составляющих сил;
  • модуль и направление одной из составляющих сил;
  • модули 2 -х составляющих сил.

Пример 1

Необходимо разложить силу F на 2 составляющие, находящиеся в одной плоскости с F и направленные вдоль прямых a и b (рисунок 4 ). Тогда достаточно от конца вектора F провести 2 прямые, параллельные прямым a и b . Отрезок F A и отрезок F B изображают искомые силы.

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 4 . Разложение вектора силы по направлениям

Второй вариант данной задачи – найти одну из проекций вектора силы по заданным векторам силы и 2 -й проекции (рисунок 5 а ).

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 5 . Нахождение проекции вектора силы по заданным векторам

Во втором варианте задачи необходимо построить параллелограмм по диагонали и одной из сторон, как в планиметрии. На рисунке 5 б изображен такой параллелограмм и обозначена искомая составляющая F 2 → силы F → .

Итак, 2 -й способ решения: прибавим к силе силу, равную — F 1 → (рисунок 5 в ). В итоге получаем искомую силу F → .

Три силы F 1 → = 1 Н ; F 2 → = 2 Н ; F 3 → = 3 Н приложены к одной точке, находятся в одной плоскости (рисунок 6 а ) и составляют углы с горизонталью α = 0 ° ; β = 60 ° ; γ = 30 ° соответственно. Необходимо найти равнодействующую силу.

Решение

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 6 . Нахождение равнодействующей силы по заданным векторам

Нарисуем взаимно перпендикулярные оси О Х и O Y таким образом, чтобы ось О Х совпадала с горизонталью, вдоль которой направлена сила F 1 → . Сделаем проекцию данных сил на координатные оси (рисунок 6 б ). Проекции F 2 y и F 2 x отрицательны. Сумма проекций сил на координатную ось О Х равняется проекции на данную ось равнодействующей: F 1 + F 2 cos β — F 3 cos γ = F x = 4 — 3 3 2 ≈ — 0 , 6 Н .

Точно также для проекций на ось O Y : — F 2 sin β + F 3 sin γ = F y = 3 — 2 3 2 ≈ — 0 , 2 Н .

Модуль равнодействующей определим с помощью теоремы Пифагора:

F = F x 2 + F y 2 = 0 , 36 + 0 , 04 ≈ 0 , 64 Н .

Направление равнодействующей найдем при помощи угла между равнодействующей и осью (рисунок 6 в ):

t g φ = F y F x = 3 — 2 3 4 — 3 3 ≈ 0 , 4 .

Сила F = 1 к Н приложена в точке В кронштейна и направлена вертикально вниз (рисунок 7 а ). Необходимо найти составляющие данной силы по направлениям стержней кронштейна. Все необходимые данные отображены на рисунке.

Решение

Вектор равнодействующей всех сил действующих на материальную точку

Рисунок 7 . Нахождение составляющих силы F по направлениям стержней кронштейна

Дано:

F = 1 к Н = 1000 Н

Пускай стержни прикручены к стене в точках А и С . На рисунке 7 б изображено разложение силы F → на составляющие вдоль направлений А В и В С . Отсюда понятно, что

F 1 → = F t g β ≈ 577 Н ;

F 2 → = F cos β ≈ 1155 Н .

Ответ: F 1 → = 557 Н ; F 2 → = 1155 Н .

Видео:Равнодействующая сила за 10 минут | Физика ЕГЭ 2022 | PartaСкачать

Равнодействующая сила за 10 минут | Физика ЕГЭ 2022 | Parta

I. Механика

Видео:На рисунке показаны силы (в заданном масштабе), действующие на материальную точку - №22726Скачать

На рисунке показаны силы (в заданном масштабе), действующие на материальную точку - №22726

Тестирование онлайн

Видео:На рисунке представлены три вектора сил, лежащих в одной плоскости - №22717Скачать

На рисунке представлены три вектора сил, лежащих в одной плоскости - №22717

Определение

Это векторная сумма всех сил, действующих на тело.

Вектор равнодействующей всех сил действующих на материальную точку

Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Видео:Урок 104. Импульс. Закон сохранения импульсаСкачать

Урок 104. Импульс. Закон сохранения импульса

Взаимосвязь со вторым законом Ньютона

Вспомним закон Ньютона:
Вектор равнодействующей всех сил действующих на материальную точкуВектор равнодействующей всех сил действующих на материальную точку

Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.

Вектор равнодействующей всех сил действующих на материальную точку

Сила Архимеда уравновешивается силой тяжести, тело равномерно перемещается в жидкости вниз.

Вектор равнодействующей всех сил действующих на материальную точку

Сила тяжести уравновешивается силой упругости. Книга покоится

Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно. Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.

Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.

Вектор равнодействующей всех сил действующих на материальную точку

Сила реакции опоры (сила, направленная вверх) длиннее силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вверх

Вектор равнодействующей всех сил действующих на материальную точку

Сила реакции опоры (сила, направленная вверх) короче силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вниз. Вектор силы тяжести, направленный вниз, длиннее.

Видео:Консультация к устному экзамену. Механика. Часть 1: "Движение материальной точки"Скачать

Консультация к устному экзамену. Механика. Часть 1: "Движение материальной точки"

Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы, действующие на тело; затем изобразить координатные оси, выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения. Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.

Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Видео:ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 классСкачать

ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 класс

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Вектор равнодействующей всех сил действующих на материальную точку

Вектор равнодействующей всех сил действующих на материальную точку

Вектор равнодействующей всех сил действующих на материальную точку

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.

Вектор равнодействующей всех сил действующих на материальную точку
Вектор равнодействующей всех сил действующих на материальную точку
Вектор равнодействующей всех сил действующих на материальную точку

Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.

Вектор равнодействующей всех сил действующих на материальную точку
Вектор равнодействующей всех сил действующих на материальную точку
Вектор равнодействующей всех сил действующих на материальную точку

Видео:Урок 52. Масса и ее измерение. Сила. Второй закон Ньютона. Равнодействующая.Скачать

Урок 52. Масса и ее измерение. Сила. Второй закон Ньютона. Равнодействующая.

Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Видео:ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИСкачать

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

Системы и блоки*

Блок — механическое устройство, колесо, вращающееся вокруг своей оси. Блоки могут быть подвижными и неподвижными.

Неподвижный блок используется лишь для изменения направления силы.

Вектор равнодействующей всех сил действующих на материальную точку

Тела, связанные нерастяжимой нитью, имеют одинаковые по величине ускорения.

Подвижный блок предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то для подъёма груза потребуется сила вдвое меньше, чем вес груза. Действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом.

Вектор равнодействующей всех сил действующих на материальную точку

Ускорение тела А в два раза меньше ускорения тела В.

Фактически, любой блок представляет собой рычаг, в случае неподвижного блока — равноплечий, в случае подвижного — с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст.

💥 Видео

Тренировочные задания по теме: "Результирующая сила"Скачать

Тренировочные задания по теме: "Результирующая сила"

Механика | динамика | понятие равнодействующей силСкачать

Механика | динамика | понятие равнодействующей сил

Динамика c нуля за 1 час | Физика, механика, законы Ньютона, подготовка к ЕГЭ, ОГЭ | 9, 10, 11 классСкачать

Динамика c нуля за 1 час | Физика, механика, законы Ньютона, подготовка к ЕГЭ, ОГЭ | 9, 10, 11 класс

Урок 79. Центр масс тела и методы определения его положенияСкачать

Урок 79. Центр масс тела и методы определения его положения

Определение равнодействующей силСкачать

Определение равнодействующей сил
Поделиться или сохранить к себе: