Вектор пойтинга поток вектора пойтинга

Поток энергии. Вектор Умова — Пойнтинга

Если на пути распространения волны поставить некоторую площадку dS, то в этом случае говорят о потоке энергии через эту площадку.

Отношение энергии, переносимой сквозь некоторую площадку к промежутку времени, за который произошел ее перенос, называют потоком энергии.

Согласно определению можно записать формулу потока энергии:

Вектор пойтинга поток вектора пойтинга.(7.23)

Используя объемную плотность энергии w, запишем полную энергию волны

dW= w (vdt) dS сos a,

где ℓ = vdt — расстояние, на которое перемещается волна, имея скорость v за малое время dt; a — угол между векторами скорости и нормали к площадке (рис. 7.6)

Вектор пойтинга поток вектора пойтинга

Рис. 7.6

Вектор пойтинга поток вектора пойтинга,

где Вектор пойтинга поток вектора пойтинга.

Следовательно, поток энергии переносимый волной

Вектор пойтинга поток вектора пойтинга(7.24)
Вектор пойтинга поток вектора пойтинга(7.25)
Вектор пойтинга поток вектора пойтинга(7.26)

называют вектором Умова-Пойнтинга, или вектором плотности потока энергии.

Вывод: Модуль вектора Умова-Пойнтинга характеризует плотность потока энергии волны, переносимой через площадку перпендикулярно направлению распространению волны т.е.,

Вектор пойтинга поток вектора пойтинга.

Мощность потока энергии волны характеризуют интенсивностью волны J.

Модуль среднего значения вектора плотности потока энергии волн называют интенсивностью.

Интенсивность волны — энергия, переносимая волной через единицу поверхности за единицу времени перпендикулярно к направлению распространению волны.

Для плоской бегущей и сферической синусоидальных волн за период интенсивность волны определяется выражением

Вектор пойтинга поток вектора пойтинга.(7.27)

Реальные среды, в которых распространяются волны, всегда поглощают энергию. При этом происходит уменьшение амплитуды и интенсивности волны, т.е. волны затухают.

Видео:Билет №38 "Поток энергии"Скачать

Билет №38 "Поток энергии"

Вектор Умова-Пойнтинга

Вы будете перенаправлены на Автор24

Вектор потока электромагнитной энергии, определяемый как:

называют вектором Умова — Пойнтинга (вектором Пойнтинга). Понятие вектора как потока энергии в разных веществах было введено Н.А. Умовым, а математическое выражение (1) получено Пойнтингом.

В электромагнитной волне векторы $overrightarrow и overrightarrow$ перпендикулярны, следовательно, модуль вектора $overrightarrow

$ имеет выражение:

Направление вектора Умова — Пойнтинга перпендикулярно к векторам $overrightarrowи overrightarrow$, и со направленно с направлением распространения волны ($overrightarrow$).

Для плоской электромагнитной волны выражение для модуля вектора Умова — Пойнтинга имеет вид:

и между мгновенными значениями напряженности магнитного и электрического полей в электромагнитной волне существует соотношение:

Модуль вектора Умова — Пойнтинга можно выразить как:

В диэлектрике объемная плотность электромагнитного поля равна:

Следовательно, сравнивая равенства (6) и (7), имеем:

В уравнения (2) -(8) входят мгновенные значения величин. Векторы в световой волне совершают колебания с частотами около $^Гц$, следовательно, весьма затруднительно следить за изменением величин во времени. Поэтому обращаются к средним значениям, переходя от мгновенных величин. Если электромагнитная волна является плоской, то среднее значение по времени вектора Умова — Пойнтинга равно:

Вектор Умова — Пойнтинга связан с энергией, которую несет электромагнитная волна соотношением:

где $frac$ — энергия, проходящая через площадку $S$ в единицу времени, $P_n=Pcosalpha $ — проекция вектора $overrightarrow

$ на нормаль $overrightarrow$ к площадке $S$. Направление вектора Умова — Пойнтинга дает характеристику движения энергии в электромагнитном поле.

Готовые работы на аналогичную тему

Если представить линии, касательные к которым в каждой точке совпадают с направлениями вектора $overrightarrow

$, то такие линии есть пути распространения энергии электромагнитного поля. В оптике подобные линии называют лучами.

Видео:Вектор Умова-Пойнтинга ● 1Скачать

Вектор Умова-Пойнтинга ● 1

Теорема Пойнтинга

Для теории электромагнитных полей формулировки законов сохранения энергии и импульса имеет весьма важное значение. Теорема Пойнтинга — один из видов формулировок закона сохранения энергии: Скорость возрастания электромагнитной энергии внутри некоторого объема в сумме с энергией, которая вытекает за единицу времени через поверхность, ограничивающую тот же объем, равна полной работе, которую совершает поле над источниками внутри заданного объема, если взять ее со знаком минус.

Поясним данную формулировку. Выделим внутри некоторой среды объем $V$, который ограничивает поверхность $S$ (рис.1). Допустим, что полная энергия, которая заключена внутри объема, равна $W$. Тогда можно записать:

где $P_n$ — нормальная составляющая вектора Умова — Пойнтинга. Интегрирование в (4) производят по всей замкнутой поверхности $S$. Положительным считают направление внешней нормали $overrightarrow$, что означает поток вектора $overrightarrow

$ (выражение, которое стоит в формуле (4) в правой части) считают большим нуля, если линии потока энергии $overrightarrow

$ выводят наружу из объема.

Вектор пойтинга поток вектора пойтинга

При этом $-frac$- величина, на которую уменьшатся, полная энергия внутри объема $V$ за единицу времени. По закону сохранения энергии она должна быть равна энергии, которая выходит через поверхность $S$ за единицу времени наружу. Следовательно, энергия, покидающая объем $V$ через поверхность $S$, выражена потоком вектора Умова — Пойнтинга.

Задание: Напишите выражение для вектора Умова — Пойнтинга, если энергию переносит волна, уравнение изменения вектора напряженности электрического поля которой задано как: $overrightarrow=10cosleft(omega t-kx+alpha right)overrightarrow(frac).$ Учесть, что амплитуда вектора напряженности магнитного поля имеет вид: $H_moverrightarrow$, частота волны $omega при ней varepsilon =2, mu approx 1 .$

Решение:

За основу решения задачи, примем определение вектора Умова — Пойнтинга:

Из условий видим, что колебания вектора напряженности электрического поля происходят по $оси Z$, колебания вектора напряженности магнитного поля по $оси X$, следовательно, вектор Умова — Пойнтинга колеблется по $оси Y$.

Модуль искомого вектора можно найти как:

Найдем амплитуду вектора $overrightarrow$, если знаем, что амплитудные значения в нашем случае связаны соотношением:

Выразим из (1.3) искомую амплитуду $H_m$, имеем:

При этом уравнение колебаний вектора напряженности запишем в виде:

Используя уравнения (1.1), (1.5) и уравнение колебаний вектора напряжённости электрического поля из условий задачи, запишем выражение для вектора Умова — Пойнтинга:

Ответ: $overrightarrow

=sqrt<frac<varepsilon _0><mu _0>>^2c^2left(omega t-kx+alpha right)overrightarrow.$

Задание: Плоский конденсатор, имеющий круглые обкладки заряжен постоянным током за время $t_0$ до напряжения $U$. Расстояние между пластинами конденсатора равно $d$. Запишите выражение для вектора Умова — Пойнтинга для точек воображаемой цилиндрической поверхности радиуса $r$, которая находится между обкладками конденсатора. Считайте, что радиус пластин конденсатора много больше, чем радиус воображаемого цилиндра.

Вектор пойтинга поток вектора пойтинга

Решение:

За основу решения задачи, примем определение вектора Умова — Пойнтинга:

Переменное электрическое поле, возникающее в результате разрядки конденсатора, вызывает переменное магнитное поле. Запишем уравнение из системы Максвелла, учитывая, что между обкладками конденсатора токов проводимости нет:

и материальное уравнение:

Возьмем производную от $overrightarrow$ по времени:

Возьмём интеграл от $rotoverrightarrow$ по поверхности цилиндра радиуса $r$, применим теорему Стокса:

Приравняем правые части выражений (2.6), (2.7), согласно тому, что выполняется (2.5):

Найдем модуль вектора Умова — Пойнтинга согласно выражениям (2.1) и (2.8):

Задание: Плоская электромагнитная волна распространяется в вакууме по $оси X$. Чему равна средняя энергия, которая проходит через единицу поверхности в единицу времени?

Решение:

сли мы имеем плоскую электромагнитную волну, то модули напряженности полей $overrightarrow $и $overrightarrow$ в произвольной точке $x$ могут быть выражены как:

где $k=frac$. Следовательно, мгновенное значение вектора $overrightarrow

$ можно записать в виде:

[P=E_0<H_0^2 left(omega t-kxright) >left(1.3right).]

По условию задачи волна распространяется в вакууме, следовательно, $varepsilon =1, mu =1 $, имеем следующее соотношение между амплитудами полей:

Кроме того, известно, что среднее значение $leftlangle ^2alpha rightrangle =frac,$ тогда используем (1.3), (1.4) получаем среднее значение вектора Умова — Пойнтинга ($leftlangle Prightrangle $) равно:

Ответ: Средняя энергия, которая проходит через единицу поверхности за единицу времени (интенсивность волны), равна $leftlangle Prightrangle =sqrt<frac<_0><_0>>frac.$

Задание: Вычислите среднее значение вектора Умова — Пойнтинга в стоячей волне.

Решение:

Колебания электрического и магнитного полей можно представить в стоячей волне с использованием следующих гармонических законов:

где $_E, varphi_H$- запаздывание по фазе отраженной волны соответствующего поля, то есть:

здесь $theta ,vartheta $ — изменение фазы при отражении, они равны или $pi , $или 0. $l-$длина линии (если рассматривается свободная волна, то это расстояние от излучателя до поверхности отражения). Обозначим:

тогда колебания, исходя из (2.1) и (2.2) в точке $x$ можно записать как:

при этом очевидно, что $E_1$ и $H_1$ не зависят от времени. Допустим, что $theta =pi $, тогда:

Исходя из (2.9) и (2.10), для вектора Умова — Пойнтинга получим:

Из формулы (2.11) следует, что колебания модуля вектора $overrightarrow

$ происходят с частотой $2omega $, при этом периодически изменяется знак. Следовательно, среднее значение вектора по времени равно $0$ ($leftlangle Prightrangle =0$).

Ответ: В стоячей волне течения энергии нет, $leftlangle Prightrangle =0$.

Видео:5 Вектор ПойтингаСкачать

5 Вектор Пойтинга

Вектор Пойнтинга (вектор Умова — Пойнтинга)

Перенос энергии бегущей упругой и электромагнитной волной определяют при помощи вектора, который называют вектором потока энергии. Этот вектор обозначим как $overline $(встречается обозначение $overline

$) Он показывает количество энергии, протекающее в волне за единицу времени через единицу площади поперечного сечения волны. Для электромагнитных волн данный вектор был введен Пойнтингом в 1884 г. Скорость переноса энергии при помощи вектора Пойнтинга не изменяется и равна характеристической скорости распространения электромагнитной волны в пространстве. Сейчас данный вектор ($overline$) называют вектором Умова — Пойнтинга.

Видео:Вектор Умова Пойтинга или откуда берётся энергия в электромагнетизмеСкачать

Вектор Умова Пойтинга или откуда берётся энергия в электромагнетизме

Определение

Вектором Умова — Пойнтинга ($overline$) называют физическую величину, определяющую поток энергии электромагнитного поля, который равен:

где $overline$ — напряженность электрического поля; $overline$ — напряженность магнитного поля. Направлен $overline$ перпендикулярно $overline$ и $overline$ и совпадает с направлением распространения электромагнитной волны.

Видео:Средняя плотность потока энергии. вектор Пойнтинга.Скачать

Средняя плотность потока энергии. вектор Пойнтинга.

Величина вектора Умова — Пойнтинга

Правая часть формулы (1) представляет собой векторное произведение векторов, значит, величина вектора Умова — Пойнтинга для электромагнитной волны равна:

где $alpha $ — угол между векторами $overline$ и $overline$, но $overlinebot $ $overline$, следовательно, получаем для электромагнитной волны:

Вектор $overline $удовлетворяет в свободном пространстве уравнению непрерывности:

где $w$ — объемная плотность энергии электромагнитного поля.

Видео:Вектор Умова-Пойнтинга ● 3Скачать

Вектор Умова-Пойнтинга ● 3

Вектор Умова — Пойнтинга плоской электромагнитной волны

В случае плоской электромагнитной волны величина вектора $overline$ равна:

где $u$ $=frac<sqrt<_0mu varepsilon _0>>$- фазовая скорость распространения электромагнитного возмущения в веществе с диэлектрической проницаемостью $varepsilon $ и магнитной проницаемостью $mu .$

где $c$ — скорость света в вакууме.

Мгновенные величины напряженности магнитного и электрического полей в рассматриваемой волне связаны соотношением:

выразим напряженность $H$:

Учитывая формулу (8) величину вектора $overline$ запишем как:

В изотропном веществе объемную плотность энергии электромагнитного поля найдем как:

Учитывая формулы (6) и (10) запишем еще одно выражение для величины вектора $overline$:

На практике переходят от мгновенных величин к их средним значениям. Для плоской электромагнитной волны средняя величина по времени вектора Умова — Пойнтинга равна:

Модуль величины $left|_tright|$ называют интенсивностью ($I$) электромагнитной волны:

Направление вектора Умова — Пойнтинга показывает направление движения энергии в электромагнитном поле. Если изобразить линии, касательные к которым в любой точке совпадут с направлениями вектора $overline$, то такие линии будут являться путями распространения энергии электромагнитного поля. В оптике это лучи.

Видео:Вектор Умова-Пойнтинга ● 2Скачать

Вектор Умова-Пойнтинга ● 2

Примеры задач с решением

Задание. На рис.1 изображен вектор фазовой скорости плоской электромагнитной волны. В какой плоскости расположены векторы $overline$ и $overline$ полей этой волны?

Вектор пойтинга поток вектора пойтинга

Решение. Основой решения нашей задачи будем считать определение вектора $overline$:

Вектор $overline$ является результатом векторного произведения векторов$overline$ и $overline$, он направлен в сторону распространения электромагнитной волны, следовательно, $overlineuparrow uparrow overline$, для рис.1 вектор Умова — Пойнтинга направлен по оси Z. Значит, векторы $overlineи overline$ лежат в плоскости XOY.

Ответ. XOY

Задание. Запишите модуль среднего вектора Умова — Пойнтинга электромагнитной волны: $overline=E_0 $Считайте, что волна распространяется в вакууме по оси X.

Решение. Модуль вектора Умова — Пойнтинга для электромагнитной волны:

где $E$ и $H$ — мгновенные значения электрического и магнитного полей. Мгновенное значение вектора Умова — Пойнтинга будет равно:

[S=EH=E_0H_0<^2 left(omega t-kxright)(2.2), >]

где $H_0$ — амплитуда колебаний напряженности магнитного поля.

Средняя величина $_t$ может быть найдена:

принимая во внимание, что $<leftlangle <^2 left(omega t-kxright) >rightrangle >_t=frac$, для вакуума имеем:

💡 Видео

Вектор Умова-Пойнтинга ● 5Скачать

Вектор Умова-Пойнтинга ● 5

3.5 Комплексный вектор ПойнтингаСкачать

3.5 Комплексный вектор Пойнтинга

Вектор Умова-Пойнтинга ● 4Скачать

Вектор Умова-Пойнтинга ● 4

Энергия течёт в пространстве а не в проводе Вектор Умова ПойтингаСкачать

Энергия течёт в пространстве а не в проводе   Вектор Умова Пойтинга

Вектор ПойнтингаСкачать

Вектор Пойнтинга

Вектор Пойнтинга и энергия. ЭНПСкачать

Вектор Пойнтинга и энергия. ЭНП

Вектор Пойнтинга и энергия ЭНПСкачать

Вектор Пойнтинга и энергия  ЭНП

Оптика - Лекция 1Скачать

Оптика - Лекция 1

вектор Пойнтинга 1Скачать

вектор Пойнтинга 1

Вектор ПойнтингаСкачать

Вектор Пойнтинга

Теорема Умова-Пойнтинга, вектор Пойнтинга. Переменное электрическое поле. Пару слов об экзамене.Скачать

Теорема Умова-Пойнтинга, вектор Пойнтинга. Переменное электрическое поле. Пару слов об экзамене.

Джоулево тепло и вектор ПойнтингаСкачать

Джоулево тепло и вектор Пойнтинга

Вектор Пойнтинга и энергия конденсатораСкачать

Вектор Пойнтинга и энергия конденсатора
Поделиться или сохранить к себе: