Вектор плотности потока энергии электромагнитной волны

Плотность энергии электромагнитной волны. Вектор Пойнтинга. Опыт Лебедева

Электромагнитные волны переносят в пространстве энергию. Энергия электромагнитного поля W — это количественная характеристика электромагнитного взаимодействия: Вектор плотности потока энергии электромагнитной волны

где iv — объемная плотность энергии поля. Объемная плотность w энергии электромагнитного поля складывается из объемных плотностей we и wm электрического и магнитного полей и, если среда не содержит сегнето- электриков и ферромагнетиков, определяется так:

Вектор плотности потока энергии электромагнитной волныI

где Е и Н — соответственно напряженности электрического и магнитного полей волны в произвольный момент времени в данной точке пространства.

Так как из выражения (20.4), то

Вектор плотности потока энергии электромагнитной волны

Формулы (20.8) и (20.9) характеризуют плотность энергии электромагнитной волны в любой момент времени в любой точке пространства.

Вектор П плотности потока энергии электромагнитной волны называется вектором Пойнтинга (Умова — Пойнтинга):

Вектор плотности потока энергии электромагнитной волны

По модулю вектор П определяет энергию, переносимую волной в единицу времени через единичную площадку, перпендикулярную направлению распространения волны:

Вектор плотности потока энергии электромагнитной волны

где v — фазовая скорость волны, равная скорости переноса энергии (при отсутствии дисперсии). Направление вектора П совпадает с направлением переноса энергии, т.е. с направлением распространения электромагнитной волны.

Единица плотности потока энергии электромагнитной волны в СИ —

ватт на метр в квадрате (Вт/м 2 ).

Если исходить из представлений о локализации электромагнитной энергии в пространстве, то можно заключить, что она будет изменяться в данном объеме V как за счет ее вытекания из объема через поверхность S, так и за счет того, что поле передает свою энергию веществу (заряженным частицам), т.е. производит работу над веществом.

Согласно теореме Пойнтинга, убыль энергии W электромагнитного поля, заключенного в объеме V, за единицу времени определяется как

Вектор плотности потока энергии электромагнитной волны

где П — вектор Пойнтинга; И — наружная нормаль к поверхности S; dS и dV — элементы поверхности и объема соответственно; j — плотность тока; Ё — напряженность электрического поля. Интеграл фп-яй^ опре-

деляет поток энергии, переносимый электромагнитным полем сквозь замкнутую поверхность S, ограничивающую рассматриваемый объем V.

Интеграл J j ? EdV описывает работу, совершаемую сторонними ЭДС над

токами проводимости, и джоулевы потери — потери энергии электромагнитного поля за счет ее преобразования в энергию теплового движения среды.

Скалярная величина /, равная модулю среднего значения вектора Пойнтинга, называется интенсивностью электромагнитной волны:

Вектор плотности потока энергии электромагнитной волны

Из (20.11) следует, что интенсивность плоской гармонической электромагнитной волны пропорциональна квадрату амплитуды ее электрической составляющей: Вектор плотности потока энергии электромагнитной волны

Опыт Лебедева. Максвелл теоретически показал, что электромагнитные волны, отражаясь или поглощаясь в телах, на которые они падают, оказывают на них давление. Это давление возникает в результате воздействия магнитного поля волны на электрические токи, возбуждаемые электрическим полем той же волны. Давление электромагнитной волны на тело определяется выражением

Вектор плотности потока энергии электромагнитной волны

где р — коэффициент отражения электромагнитной волны’, это отношение интенсивности отраженной волны к интенсивности падающей (при полном отражении р = 1, при полном поглощении р = 0); (w) — среднее за период волны значение объемной плотности энергии электромагнитного поля. Если волна падает на поверхность тела наклонно, под углом 0 к нормали, то (w) = (7cos0)/c.

Давление электромагнитного излучения обычно очень мало. Например, давление солнечного излучения на Земле составляет около К)- 6 Па, что в 10 10 раз меньше атмосферного давления. Экспериментальное доказательство существования давления электромагнитных волн, подтвердившее теорию Максвелла, было получено П. Н. Лебедевым. В 1899 г. он обнаружил и измерил давление света на твердые тела, а в 1910 г. — на газы. В эксперименте, выполненном в 1899 г., объект исследования имел вид подвижного крылышка. Лебедев обнаружил поворот этого крылышка под действием падающего на него света. Величина светового давления оказалась соответствующей формуле (20.15).

Давление света играет большую роль в астрофизике и атомных явлениях. Например, наряду с давлением газа давление света обеспечивает стабильность звезд, противодействуя силам гравитации.

Видео:Средняя плотность потока энергии. вектор Пойнтинга.Скачать

Средняя плотность потока энергии. вектор Пойнтинга.

Вектор плотности потока энергии электромагнитной волны

Вектор плотности потока энергии электромагнитной волны

Энергия и импульс электромагнитного поля Вектор плотности потока энергии электромагнитной волны Вектор плотности потока энергии электромагнитной волны

Мы уже много раз показывали, что электромагнитное поле обладает энергией. Значит, распространение электромагнитных волн связано с переносом энергии (подобно тому, как распространение упругих волн в веществе связано с переносом механической энергии). Сама возможность обнаружения ЭМВ указывает на то, что они переносят энергию.

Для характеристики переносимой волной энергии русским ученым Н.А. Умовым были введены понятия о скорости и направлении движения энергии, о потоке энергии. Спустя десять лет после этого, в 1884 г., английский ученый Джон Пойнтинг описал процесс переноса энергии с помощью вектора плотности потока энергии.

Введем вектор Вектор плотности потока энергии электромагнитной волны— приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:

Вектор плотности потока энергии электромагнитной волны.

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей Вектор плотности потока энергии электромагнитной волныи Вектор плотности потока энергии электромагнитной волныэлектрического и магнитного полей:

Вектор плотности потока энергии электромагнитной волны.

Учитывая, что Вектор плотности потока энергии электромагнитной волны, получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е. Вектор плотности потока энергии электромагнитной волны. Поэтому

Вектор плотности потока энергии электромагнитной волны.

Умножив плотность энергии w на скорость υ распространения волны в среде, получим модуль плотности потока энергиипоток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени:

Вектор плотности потока энергии электромагнитной волны.

(6.4.1)

Так как векторы Вектор плотности потока энергии электромагнитной волныи Вектор плотности потока энергии электромагнитной волнывзаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора [ Вектор плотности потока энергии электромагнитной волны] совпадает с направлением переноса энергии, а модуль этого вектора равен EH (рис. 6.8).

Вектор плотности потока энергии электромагнитной волны

Вектор плотности потока электромагнитной энергии называется вектором Умова–Пойнтинга:

Вектор плотности потока энергии электромагнитной волны.

(6.4.2)

Вектор Вектор плотности потока энергии электромагнитной волны Вектор плотности потока энергии электромагнитной волнынаправлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

В сферической электромагнитной волне, излучаемой ускоренно двигающимися зарядами, векторы Вектор плотности потока энергии электромагнитной волнынаправлены по параллелям, векторы Вектор плотности потока энергии электромагнитной волны— по меридианам, а поток энергии Вектор плотности потока энергии электромагнитной волны— по нормали Вектор плотности потока энергии электромагнитной волны(рис. 6.9).

Вектор плотности потока энергии электромагнитной волны

Векторы Умова–Пойнтинга зависят от пространства и времени, так как от них зависят модули векторов напряженности электрического и магнитного полей. Поэтому часто пользуются параметром, называемым интенсивностью – модуль среднего значения вектора Умова–Пойнтинга:

Вектор плотности потока энергии электромагнитной волны.

(6.4.3)

Интенсивность пропорциональна квадрату амплитуды:

Вектор плотности потока энергии электромагнитной волны Вектор плотности потока энергии электромагнитной волныВектор плотности потока энергии электромагнитной волны.

(6.4.4)

Зависимость интенсивности излучения от направления называют диаграммой направленности. Такая диаграмма для линейного излучателя показана на рис. 6.10.

Вектор плотности потока энергии электромагнитной волны

Как доказал Герц, диполь сильнее всего излучает в направлении перпендикулярном по отношению к собственному направлению.

Ускоренно двигающиеся заряды излучают электромагнитную энергию в окружающее пространство. Вектор Вектор плотности потока энергии электромагнитной волнынаправлен вдоль радиуса Вектор плотности потока энергии электромагнитной волныи убывает обратно пропорционально r 2 . Излучение максимально в направлении, перпендикулярном вектору Вектор плотности потока энергии электромагнитной волны, и отсутствует вдоль этого вектора. Поэтому диаграмма направленности диполя имеет вид двух симметричных лепестков, как показано на рис. 6.10.

Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление ЭМВ объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля действию силы. Однако, значение этого давления ничтожно мало.

Давление света и электромагнитный импульс настолько малы, что непосредственное их измерение затруднительно. Так, зеркало, расположенное на расстоянии 1 м от источника света в миллион свечей (кандел), испытывает давление 10 — 7 Н/м 2 . Давление излучения Солнца на поверхность Земли равно 4,3×10 — 6 Н/м 2 , а общее давление излучения Солнца на Землю равно 6×10 8 Н, что в 10 13 раз меньше силы притяжения Солнца.

Световое давление было впервые обнаружено и измерено в 1899 г. в Москве русским ученым П.Н. Лебедевым (1866-1912). Его результаты, как и более точные измерения последующих исследователей, согласуются с теорией в пределах ошибок опыта — до 2 %.

Вектор плотности потока энергии электромагнитной волны Вектор плотности потока энергии электромагнитной волны

На рис. 6.11 изображен прибор, с помощью которого было измерено давление света, – радиометр. Свет, отраженный посеребренной поверхностью каждой лопасти 2, 3, передает вдвое больший импульс по сравнению со светом, поглощенным зачерненной поверхностью 1, 4. Вследствие этого лопасти начинают вращаться по часовой стрелке.

Давление света можно рассчитать по формуле:

Вектор плотности потока энергии электромагнитной волны,

где J – интенсивность света, K – коэффициент отражения.

Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой ЭМВ.

Давление света играет существенную роль в двух противоположных по масштабу областях явлений.

Так, например, гравитационное притяжение верхних слоев звезд к центру в значительной мере уравновешивается силой давления светового потока, идущего от центра звезды наружу. В атомных процессах существенной является отдача, испытываемая возбужденным атомом при излучении им света в силу малости массы атома. Световое давление может создавать ускорение атомов до Вектор плотности потока энергии электромагнитной волны, где g – ускорение свободного падения.

Впервые гипотеза о световом давлении была высказана в 1619 г. немецким ученым И. Кеплером (1571-1630) для объяснения отклонения хвостов комет, пролетающих вблизи Солнца (рис. 6.12).

Вектор плотности потока энергии электромагнитной волны Вектор плотности потока энергии электромагнитной волны

Возможными областями физического применения светового давления могут служить процессы разделения смеси изотопов газов, ускорение микрочастиц и создание условий для протекания управляемой термоядерной реакции.

Электромагнитная масса и импульс

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс.

Выражая импульс как Вектор плотности потока энергии электромагнитной волны(поле в вакууме распространяется со скоростью света с), получим

Вектор плотности потока энергии электромагнитной волны,

Вектор плотности потока энергии электромагнитной волны.

(6.4.5)

Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения.

Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса mυ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса Вектор плотности потока энергии электромагнитной волныназывают электромагнитной массой:

Вектор плотности потока энергии электромагнитной волны,

(6.4.6)

где е – заряд движущейся частицы, а – ее радиус.

И даже если тело не обладает никакой иной массой, оказывается, что между импульсом и скоростью заряженной частицы существует соотношение:

Вектор плотности потока энергии электромагнитной волны.

(6.4.6)

Это соотношение как бы раскрывает происхождение массы – это электродинамический эффект. Движение заряженной частицы сопровождается возникновением магнитного поля. Магнитное поле сообщает телу дополнительную инертность – при ускорении затрачивается работа на создание магнитного поля, при торможении –работа против затормаживающих сил индукционного происхождения. По отношению к движущемуся заряду электромагнитное поле является средой, неотделимой от заряда.

В общем случае можно записать, что полный импульс равен сумме механического и электромагнитного импульсов; возможно, что другие поля вносят и иные вклады в полную массу частицы, но, определенно, в полной массе есть электромагнитная часть:

Вектор плотности потока энергии электромагнитной волны, Вектор плотности потока энергии электромагнитной волны.

Если учесть релятивистские эффекты сокращения длины и преобразования электрических и магнитных полей, то для электромагнитного импульса получается также релятивистски инвариантная формула:

Вектор плотности потока энергии электромагнитной волны.

(6.4.7)

Таким же образом изменяется релятивистский механический импульс.

Видео:4.8 Плотность потока мощности электромагнитной волныСкачать

4.8 Плотность потока мощности электромагнитной волны

Электромагнитные волны

теория по физике 🧲 колебания и волны

Вспомним, что волна — это колебания, распространяющиеся в пространстве. Механическая волна представляет собой колебания, распространяющиеся в вещественной среде. Тогда электромагнитная волна — это электромагнитные колебания, которые распространяются в электромагнитном поле.

Видео:Энергия электромагнитных волн. 11 класс.Скачать

Энергия электромагнитных волн. 11 класс.

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности → E и магнитной индукции → B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

Вектор плотности потока энергии электромагнитной волны

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов → E и → B в любой точке совпадают по фазе.

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны. Следовательно, электромагнитная волна — поперечная волна.

Видео:Физика 11 класс (Урок№10 - Электромагнитные волны.)Скачать

Физика 11 класс (Урок№10 - Электромагнитные волны.)

Условия возникновения электромагнитных волн

Электромагнитные волны излучаются только колеблющимися заряженными частицами. При этом важно, чтобы скорость их движения постоянно менялась, т.е. чтобы они двигались с ускорением.

Наличие ускорения — главное условие возникновения электромагнитных волн.

Электромагнитное поле может излучаться не только колеблющимся зарядом, но и заряженной частицей, перемещающейся с постоянно меняющейся скоростью. Интенсивность электромагнитного излучения тем больше, чем больше ускорение, с которым движется заряд.

Представим заряд, движущийся с постоянной скоростью. Тогда создаваемые им электрическое и магнитное поля будут сопровождать его как шлейф. Только при ускорении заряда поля «отрываются» от частицы и начинают самостоятельное существование в форме электромагнитных волн.

Впервые существование электромагнитных волн предположил Максвелл, который посчитал, что они должны распространяться со скоростью света. Но экспериментально они были обнаружены лишь спустя 10 лет после смерти ученого. Их открыл Герц. Он же подтвердил, что скорость распространения электромагнитных волн равна скорости света: c = 300 000 км/с.

Видео:Электромагнитные волны. Поток энергии. Вектор Умова-Пойтинга.Скачать

Электромагнитные волны. Поток энергии. Вектор Умова-Пойтинга.

Плотность потока электромагнитного излучения

Излученные электромагнитные волны несут с собой энергию. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.

Вектор плотности потока энергии электромагнитной волны

На рисунке выше прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.

Плотность потока электромагнитного излучения, или интенсивность волны — отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt.

Плотность потока электромагнитного излучения обозначается как I. Единица измерения — Вт/м 2 (ватт на квадратный метр). Поэтому плотность потока электромагнитного излучения фактически представляет собой мощность электромагнитного излучения, проходящего через единицу площади поверхности.

Численно плотность потока электромагнитного излучения определяется формулой:

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (см. рисунок ниже).

Вектор плотности потока энергии электромагнитной волны

Объем цилиндра: ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = w cΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому получаем:

I = w c Δ t S S Δ t . . = w c

Следовательно, плотность потока электромагнитного излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Плотность электромагнитной энергии — энергия электромагнитного излучения в единице объема. Обозначается как w. Единица измерения — Дж/м 3 .

Пример №1. Плотность потока излучения равна 6 мВт/м 2 . Найти плотность энергии электромагнитной волны.

w = I c . . = 6 · 10 − 3 3 · 10 8 . . = 2 · 10 − 11 ( Д ж м 3 . . )

Точечный источник излучения

Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.

Точечный источник — источник излучения, размеры которого много меньше расстояния, на котором оценивается его действие.

Предполагается, что точечный источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В действительности таких источников не существует. Но за такие источники излучения можно принять звезды, так как расстояние между ними существенно больше размеров самих звезд.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, получим:

I = Δ W S Δ t . . = Δ W 4 π Δ t . . · 1 R 2 . .

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Пример №2. Плотность потока электромагнитного излучения на расстоянии 5 метров от точечного источника составляет 20 мВт/м 2 . Найти плотность потока электромагнитного излучения на расстоянии 10 метров от этого источника.

Расстояние по условию задачи увеличилось вдвое. Так как плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника, при увеличении расстояния вдвое интенсивность излучения уменьшится в 4 раза. То есть, она станет равной 5 мВт/м 2 .

Зависимость плотности потока излучения от частоты

Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению заряда. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения I пропорциональна:

Плотность потока излучения пропорциональна четвертой степени частоты. Так, при увеличении частоты колебаний зарядов в 2 раза энергия, излучаемая ими, возрастает в 16 раз. При увеличении частоты в 3 раза, энергия излучения увеличивается в 81 раз, и т.д.

Пример №3. Частота электромагнитной волны уменьшилась в 4 раза. Найти, во сколько раз изменилась плотность потока излучения.

Так как плотность потока излучения пропорциональна четвертой степени частоты, мы можем найти плотность потока излучения путем извлечения корня из числа 4 дважды:

4 √ 4 = √ √ 4 = √ 2 ≈ 1 , 4

Плотность потока излучения уменьшилась в 1,4 раза.

Видео:Экспериментальное обнаружение электромагнитных волн | Физика 11 класс #20 | ИнфоурокСкачать

Экспериментальное обнаружение электромагнитных волн | Физика 11 класс #20 | Инфоурок

Свойства электромагнитных волн

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.

Свойство 1 — Поглощение электромагнитных волн
Вектор плотности потока энергии электромагнитной волныЕсли расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким.
Свойство 2 — Отражение электромагнитных волн
Вектор плотности потока энергии электромагнитной волныЕсли диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его.
Свойство 3 — Преломление электромагнитных волн
Вектор плотности потока энергии электромагнитной волныЭлектромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Свойство 4 — Поперечность электромагнитных волн
Вектор плотности потока энергии электромагнитной волныПоместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Видео:Урок 374. Энергия, переносимая волной. Интенсивность сферической волныСкачать

Урок 374. Энергия, переносимая волной. Интенсивность сферической волны

Шкала электромагнитных волн

Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:

  • радиоволны;
  • оптическое излучение;
  • ионизирующее излучение.

Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.

Наименование диапазона волнДлины волн (м)Частоты (Гц)
Радиоволны
Инфразвук, звук>10 53
Сверхдлинные волны (СДВ)10 4 –10 53∙10 3 –3∙10 4
Длинные волны (ДВ)10 3 –10 43∙10 4 –3∙10 5
Средние волны (СВ)10 2 –10 33∙10 5 –3∙10 6
Короткие волны (КВ)10–1003∙10 6 –3∙10 7
Ультракороткие (УКВ):

  • Метровые (МВ)
  • Дециметровые (ДМВ)
  • Сантиметровые (СМВ)
  • Миллиметровые (ММВ)
  • Субмиллиметровые
  • 1–10
  • 0,1–1
  • 10 –2 –0,1
  • 10 –3 –10 –2
  • 10 –4 –10 –3
  • 3∙10 7 –3∙10 8
  • 3∙10 9 –3∙10 10
  • 3∙10 10 –3∙10 11
  • 3∙10 11 –3∙10 12
  • 3∙10 12 –3∙10 13
Оптические волны
Инфракрасное излучение0,78∙10 –6 –10 –43∙10 11 –4∙10 14
Видимый свет0,38∙10 –6 –0,78∙10 –64∙10 14 –7,5∙10 14
Ультрафиолетовое излучение10 –7 –0,38∙10 –67,5∙10 11 –3∙10 15
Ионизирующее излучение
Рентгеновское излучение5∙10 –12 –10 –83∙10 16 –6∙10 19
Гамма-излучение–12>6∙10 19

Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.

Вектор плотности потока энергии электромагнитной волны

В электромагнитной волне, распространяющейся со скоростью → v , происходят колебания векторов напряжённости электрического поля → E и индукции магнитного поля → B . При этих колебаниях векторы → v , → E , → B . имеют взаимную ориентацию:

🔥 Видео

Билет №38 "Поток энергии"Скачать

Билет №38 "Поток энергии"

Излучение электромагнитных волн. Опыты Герца. 11 класс.Скачать

Излучение электромагнитных волн. Опыты Герца. 11 класс.

Урок 384. Излучение электромагнитных волн.Скачать

Урок 384. Излучение электромагнитных волн.

Вектор Умова-Пойнтинга ● 1Скачать

Вектор Умова-Пойнтинга ● 1

Раскрытие тайн электромагнитной волныСкачать

Раскрытие тайн электромагнитной волны

78. Электромагнитные волныСкачать

78. Электромагнитные волны

11 класс урок №41 Энергия электромагнитных волнСкачать

11  класс урок №41  Энергия электромагнитных волн

Электромагнетизм Л11.5. Электромагнитные волны. Вектор ПойнтингаСкачать

Электромагнетизм Л11.5. Электромагнитные волны. Вектор Пойнтинга

Вектор Умова-Пойнтинга ● 3Скачать

Вектор Умова-Пойнтинга ● 3

Урок №45. Электромагнитные волны. Радиоволны.Скачать

Урок №45. Электромагнитные волны. Радиоволны.

Интенсивность плоской электромагнитной волныСкачать

Интенсивность плоской электромагнитной волны

Косарева О. Г. - Механика - Волны в жидкости и газе. Плотность потока энергииСкачать

Косарева О. Г. - Механика - Волны в жидкости и газе. Плотность потока энергии

Парадокс электромагнитной волныСкачать

Парадокс электромагнитной волны
Поделиться или сохранить к себе: