Вектор нормали к оси ox

Видео:Построение проекции вектора на осьСкачать

Построение проекции вектора на ось

Нормальный вектор плоскости, координаты нормального вектора плоскости

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Нормальный вектор плоскости – определение, примеры, иллюстрации

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Вектор нормали к оси ox

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Видео:Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = ( A , B , C ) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Найти координаты нормального вектора, принадлежащего плоскости 2 x — 3 y + 7 z — 11 = 0 .

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = ( 2 , — 3 , 7 ) — это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , — 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = ( 2 , — 3 , 7 ) .

Определить координаты направляющих векторов заданной плоскости x + 2 z — 7 = 0 .

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z — 7 = 0 к виду 1 · x + 0 · y + 2 z — 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны ( 1 , 0 , 2 ) . Тогда множество векторов будет иметь такую форму записи ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

Ответ: ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Видео:Векторные величины Проекция вектора на осьСкачать

Векторные величины  Проекция вектора на ось

Нормальный вектор плоскости

Вы будете перенаправлены на Автор24

Нормальный вектор плоскости — наиболее компактный и наглядный способ определить плоскость в трехмерной системе координат.

Вектор нормали к плоскости — любой ненулевой вектор, принадлежащий прямой, перпендикулярной к рассматриваемой плоскости. По отношению к такой прямой нормальный вектор является направляющим.

Для каждой плоскости существует бесконечное множество коллинеарных друг по отношению к другу нормальных векторов.

В качестве примера плоскостей, задаваемых нормальными векторами, можно рассматривать координатные плоскости системы координат $Oxyz$: $Oxy$, $Oxz$, $Oyz$. Для них нормальными векторами будут, векторы, направляющие оси, т.е., соответственно, $Oz$, $Oy$ и $Ox$ ($vec, vec, vec$).

Рисунок 1. Векторы в трехмерной системе координат. Автор24 — интернет-биржа студенческих работ

Рассмотрим основные математические закономерности, показываюшие как найти вектор нормали к плоскости.

Формула нормального вектора выводится из общего уравнения плоскости, которое имеет вид $Ax + By + Cz + D = 0$.

Плоскости, в уравнениях которых один из коэффициентов равен $0$, соответствуют базовым плоскостям системы координат ($Oxy, Oxz, Oyz$).

$Ax + D = 0 \ By + D = 0 \ Cz + D = 0$

описывают плоскости, параллельные $Oxy, Oxz, Oyz$ и отстоящие от них на расстояние, равное отношению свободного члена $D$ к соответствующему коэффициенту, например:

Нормальный вектор плоскости $Ax + By + Cz + D = 0$ можно выразить как $bar(A; B; C)$. Существует бесконечное множество плоскостей, перпендикулярных данному вектору. Для определения плоскости нужна еще точка на ней. Через любую точку также можно провести бесконечное количество плоскостей (их совокупность называется связкой). Нормальный вектор и точка взаимодополняют друг друга, определяя единственную плоскость.

Готовые работы на аналогичную тему

Точку на плоскости можно обозначить как $M_1(x; y; z)$. Вектор, соединяющий ее с любой другой точкой $M$ данной плоскости, при скалярном умножении на вектор нормали к плоскости $N$ дает ноль:

$overline cdot N = 0$

Переписав уравнение через проекции, получим

$overline cdot N = A(x — x_1) + B(y — y_1) + C(z — z_1) = 0$

Это дает нам возможность выводить уравнение плоскости через координаты точки и параметры нормального вектора плоскости.

Определить плоскость в пространстве можно и другими способами, например, с помощью указания координат трех ее точек, не лежащих на одной прямой, двух неколлинеарных векторов и точки и т.д. Однако форма записи с помощью нормального вектора плоскости и точки наиболее компактна. К ней другие методы задания плоскости можно привести путем алгебраических преобразований.

С помощью нормального вектора плоскости как ее определителя могут быть решены задачи на доказательство параллельности или перпендикулярности плоскостей, на составление уравнения плоскости, на нахождение угла между прямой и плоскостью, на нахождение угла между плоскостями.

Сформулируем уравнение плоскости, проходящей через точку с координатами $M(1; -2; 3)$ и перпендикулярной вектору $N = 2i + 4k$.

Для начала найдем коэффициенты, соответствующие координатам:

$A = 2 \ B = 0 \ C = 4$

Заметим, что $B = 0$ следует из того, что направляющий вектор $vec$ оси $Oy$ в исходном уравнении не упоминается.

Подставим значения в формулу:

$2(x — 1) + 0(y + 2) + 4(z — 3) = 0$

После стандартных преобразований получим ответ:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 03 2022

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Уравнения плоскости: общее, через три точки, нормальное

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Плоскость, общее уравнение плоскости

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Вектор нормали к оси ox

Если известна какая-нибудь точка Вектор нормали к оси oxплоскости P и какой-нибудь вектор Вектор нормали к оси oxнормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Вектор нормали к оси ox

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор Вектор нормали к оси oxперпендикулярен вектору Вектор нормали к оси ox(рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

Вектор нормали к оси ox.

Вектор Вектор нормали к оси oxзадан по условию. Координаты вектора Вектор нормали к оси oxнайдём по формуле Вектор нормали к оси ox:

Вектор нормали к оси ox.

Теперь, используя формулу скалярного произведения векторов Вектор нормали к оси ox, выразим скалярное произведение Вектор нормали к оси oxв координатной форме:

Вектор нормали к оси ox. (1)

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, Вектор нормали к оси ox, т.е. равенство (1) нарушается.

Перед решением задач может пригодиться урок о декартовой системе координат. Также хорошо бы владеть материалом о скалярном произведении векторов.

Пример 1. Составить уравнение плоскости, проходящей через точку Вектор нормали к оси oxи перпендикулярной вектору Вектор нормали к оси ox.

Решение. Используем формулу (1), еще раз посмотрим на неё:

Вектор нормали к оси ox.

В этой формуле числа A , B и C координаты вектора Вектор нормали к оси ox, а числа x 0 , y 0 и z 0 — координаты точки Вектор нормали к оси ox.

Вычисления очень простые: подставляем эти числа в формулу и получаем

Вектор нормали к оси ox.

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

Вектор нормали к оси ox.

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

Вектор нормали к оси ox(2)

называется общим уравнением плоскости.

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением Вектор нормали к оси ox.

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6) .

Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B(0; −3; 0) .

И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C(2; 0; 0) . По трём полученным в нашем решении точкам A(0; 0; 6) , B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.

Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение Вектор нормали к оси oxопределяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение Вектор нормали к оси oxопределяет плоскость, параллельную оси Ox, поскольку вектор нормали Вектор нормали к оси oxэтой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость Вектор нормали к оси oxпараллельная оси Oy, а при C = 0 плоскость Вектор нормали к оси oxпараллельна оси Oz.

3. При A = D = 0 уравнение Вектор нормали к оси oxопределяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость Вектор нормали к оси oxпроходит через ось Oy, а плоскость Вектор нормали к оси oxчерез ось Oz.

4. При A = B = 0 уравнение Вектор нормали к оси oxопределяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость Вектор нормали к оси oxпараллельна плоскости yOz, а плоскость Вектор нормали к оси ox— плоскости xOz.

5. При A = B = D = 0 уравнение Вектор нормали к оси ox(или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку Вектор нормали к оси ox.

Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид Вектор нормали к оси ox. Для определения коэффициентов A и C воспользуемся тем, что точка Вектор нормали к оси oxпринадлежит плоскости P .

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (Вектор нормали к оси ox). Смотрим ещё раз на координаты точки:

Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:

Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем

Подставив найденное значение A в уравнение Вектор нормали к оси ox, получим

Вектор нормали к оси oxили Вектор нормали к оси ox.

Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением Вектор нормали к оси ox.

Видео:Направляющий и нормальный вектор прямой на плоскости | Векторная алгебраСкачать

Направляющий и нормальный вектор прямой на плоскости | Векторная алгебра

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки Вектор нормали к оси ox, Вектор нормали к оси oxи Вектор нормали к оси ox, не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы Вектор нормали к оси oxи Вектор нормали к оси oxне коллинеарны, а поэтому любая точка плоскости Вектор нормали к оси oxлежит в одной плоскости с точками Вектор нормали к оси ox, Вектор нормали к оси oxи Вектор нормали к оси oxтогда и только тогда, когда векторы Вектор нормали к оси ox, Вектор нормали к оси oxи Вектор нормали к оси oxкомпланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

Вектор нормали к оси ox(3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

Вектор нормали к оси ox, Вектор нормали к оси ox, Вектор нормали к оси ox

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Вектор нормали к оси ox

Вектор нормали к оси ox

Получили общее уравнение плоскости

Вектор нормали к оси oxили после деления на -2:

Вектор нормали к оси ox.

Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.

Видео:Урок 9. Проекции вектора на координатные осиСкачать

Урок 9. Проекции вектора на координатные оси

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Нормальным уравнением плоскости называется её уравнение, записанное в виде

Вектор нормали к оси ox,

где Вектор нормали к оси ox— направляющие косинусы нормали плоскости, Вектор нормали к оси ox— расстояние от начала координат до плоскости.

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости. (Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).

Пусть M — какая угодно точка пространства. Для нахождения отклонения Вектор нормали к оси oxточки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты Вектор нормали к оси oxэтой точки.

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

Вектор нормали к оси ox,

так как расстояние не может быть отрицательным числом.

Общее уравнение плоскости

Вектор нормали к оси ox

приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой

Вектор нормали к оси ox.

Знак нормирующего множителя берётся противоположным знаку свободного члена Вектор нормали к оси oxв общем уравнении плоскости.

Пример 6. Привести уравнение плоскости Вектор нормали к оси oxк нормальному виду.

Решение. Вычислим нормирующий множитель:

Вектор нормали к оси ox.

Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:

Вектор нормали к оси ox.

Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3) , а плоскость задана общим уравнением Вектор нормали к оси ox.

Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

Вектор нормали к оси ox.

Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:

Вектор нормали к оси ox.

Вычислим отклонение точки от плоскости:

Вектор нормали к оси ox

Найдём теперь расстояние от точки до плоскости как модуль отклонения:

📺 Видео

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

#вектор Разложение вектора по ортам. Направляющие косинусыСкачать

#вектор Разложение вектора по ортам.  Направляющие косинусы

Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать

Векторы и действия над ними, проекция вектора на координатные оси.  9 класс.

Как проецировать вектор сил на оси | ЕГЭ Физика | Николай Ньютон. ТехноскулСкачать

Как проецировать вектор сил на оси | ЕГЭ Физика | Николай Ньютон. Техноскул

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).

455. Уравнение плоскости, параллельной осиСкачать

455. Уравнение плоскости, параллельной оси

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

Основы кинематики. Тема 3. Проекция вектора на осьСкачать

Основы кинематики. Тема 3. Проекция вектора на ось

10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.
Поделиться или сохранить к себе: