Вектор магнитной индукции векторная скалярная

Содержание
  1. Вектор индукции магнитного поля — формулы и определение с примерами
  2. Вектор индукции магнитного поля. Графическое изображение магнитных полей
  3. Примеры магнитных полей
  4. Индукция магнитного поля
  5. Вектор магнитной индукции
  6. ÐагниÑное поле
  7. Направление вектора магнитной индукции и способы его определения
  8. Основные формулы для вычисления вектора МИ
  9. Закон Био-Савара-Лапласа
  10. Принцип суперпозиции
  11. Теорема о циркуляции
  12. Магнитный поток
  13. Магнитное поле прямолинейного тока
  14. Магнитное поле кругового тока
  15. Магнитное поле электромагнита (соленоида)
  16. Вектор магнитной индукции векторная скалярная
  17. Магнитная индукция
  18. Формулы вычисления магнитной индукции
  19. Формула магнитной индукции:
  20. Другие формулы, где встречается B
  21. Сила Ампера:
  22. Сила Лоренца:
  23. Магнитный поток:
  24. Электромагнитная индукция и магнитная индукция: какая между ними разница?
  25. Магнитная индукция
  26. Содержание
  27. Основные уравнения
  28. В магнитостатике
  29. В общем случае
  30. Магнитная индукция. Определение и описание явления.
  31. Физический смысл магнитной индукции
  32. Формула магнитной индукции
  33. Магнитный поток
  34. Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.
  35. Магнитное действие электрического тока
  36. Вектор магнитной индукции.
  37. Магнитный поток

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Вектор индукции магнитного поля — формулы и определение с примерами

Полем физической величины называют множество ее значений, заданных не-прерывным образом в пространстве. Если физическая величина — скаляр, то поле называется скалярным, например поле температур нагретого металлического шара. Если физическая величина — вектор, то поле называется векторным. Примером может служить электростатическое поле, задаваемое в пространстве вектором его напряженности.

Вокруг магнитов существует особое состояние пространства — магнитное поле. Земля является гигантским магнитом.

Уже в VI в. до н. э. в Китае было известно, что некоторые руды (например, магнитный железняк) обладают способностью притягиваться друг к другу и притягивать на расстоянии железные предметы. Поскольку впервые куски таких руд были обнаружены возле города Магнезии в Малой Азии, то в Древней Греции они получили название магнитов (естественных магнитов).

После того как в Древнем Китае обратили внимание на способность естественных магнитов ориентироваться в магнитном поле Земли, магниты стали применяться как компасы и получили название «указатель юга» (рис. 131).

Вектор магнитной индукции векторная скалярная

Позже, в XI в., китайцы изобрели компас со стрелкой, позволяющий быстро ориентироваться на местности при любой погоде (рис. 132).

Вектор магнитной индукции векторная скалярная

Наибольшим притягивающим действием обладают определенные зоны магнита, называемые полюсами.

Термин «полюсы магнита» от греческого слова Вектор магнитной индукции векторная скалярнаяось, конец оси был введен Петром Перегрином в 1269 г. в книге «Письма о магнитах».

Северным магнитным полюсом магнита называют обращенный на север конец свободно ориентирующегося в пространстве магнита. Обозначают северный полюс буквой N.

Противоположный конец магнита, направленный на юг, называется южным магнитным полюсом. Его обозначают буквой S.

Простейшие опыты с магнитной стрелкой показывают, что магниты могут притягиваться или отталкиваться. Разноименные магнитные полюса (как и в случае электрических зарядов) притягиваются, а одноименные — отталкиваются.

Таким образом, в пространстве вокруг магнита существует магнитное поле, которое можно обнаружить по действию сил на другие магниты, внесенные в область существования поля.

Так как сила — величина векторная, то и магнитное поле является векторным полем.

Для количественной характеристики магнитного поля в каждой точке пространства вводится физическая векторная величина — вектор индукции Вектор магнитной индукции векторная скалярнаямагнитного поля.

Термин «индукция» происходит от латинского слова induction — наведение.
Для определения вектора индукции Вектор магнитной индукции векторная скалярнаямагнитного поля в данной точке пространства необходимо знать его модуль и направление. За направление вектора индукции Вектор магнитной индукции векторная скалярнаямагнитного поля в данной точке пространства принимается направление, которое указывает северный полюс свободной магнитной стрелки, помещенной в исследуемую область пространства.

Силу, с которой один магнит действует на другой, можно рассматривать как результат действия магнитного поля, созданного первым магнитом, на второй (или наоборот).

Заметим, что структуру магнитного поля можно сделать «видимой» с помощью железных опилок, помещенных вблизи магнита на плоской подставке: при легком потряхивании опилки располагаются вдоль характерных кривых (рис. 133,134), называемых «магнитными» линиями.

Вектор магнитной индукции векторная скалярнаяВектор магнитной индукции векторная скалярная

В 1831 г. Фарадей пояснил: «Под магнитными кривыми понимают линии магнитных сил. Эти линии вырисовываются железными опилками; к ним касательно располагались бы весьма небольшие магнитные стрелочки».

При несомненном сходстве электростатического и магнитного полей между ними имеется существенное отличие. Электростатическое поле потенциально, и его силовые линии разомкнуты — они начинаются на положительных зарядах и заканчиваются на отрицательных.

Магнитное поле является вихревым, поскольку его магнитные линии замкнуты: они не имеют ни начала, ни конца (рис. 135).

Вектор магнитной индукции векторная скалярная

Эти линии не начинаются на северном полюсе и не заканчиваются на южном — они замыкаются внутри магнита, нигде не прерываясь. Это значит, что магнитное поле не имеет источников — магнитных зарядов.

Вследствие того что магнитные линии поля непрерывны, в любом магнитном образце всегда существуют два разноименных полюса. Иными словами, полюса магнита — места «выхода» наибольшего количества линий из магнита или их «входа» в него. Место, из которого выходят магнитные линии, соответствует северному магнитному полюсу, а место, где они входят в магнит, — южному.
Сильные магнитные свойства, кроме железа и стали, обнаруживают такие металлы, как никель, кобальт, гадолиний.

Видео:Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Вектор индукции магнитного поля. Графическое изображение магнитных полей

Векторное поле, модуль и направление которого во всех точках пространства одинаковы, называется однородным. Так как модуль напряженности поля характеризуется густотой расположения изображающих его линий, то из определения однородного поля следует, что силовые линии такого поля — параллельные прямые, равноотстоящие друг от друга. Примером может служить электростатическое поле плоского конденсатора.

В 1820 г. Ханс Кристиан Эрстед обнаружил действие проводника с током на магнитную стрелку. Расположив прямой провод параллельно стрелке компаса до включения тока (рис. 136, а), он заметил, что после включения тока стрелка поворачивается на некоторый угол, стремясь установиться в плоскости, перпендикулярной проводнику (рис. 136, б, в).

Вектор магнитной индукции векторная скалярная

Эрстед также заметил, что направление вращения стрелки менялось на противоположное при изменении направления тока в цепи (полярности батареи) (см. рис. 136, б, в).

Угол поворота стрелки зависел от силы тока в проводнике и расстояния от него до стрелки, но не зависел от материала, из которого был изготовлен проводник.

Эксперименты Эрстеда впервые показали связь между электрическими и магнитными явлениями. Изучение этой связи привело к целому ряду открытий, позволивших создать современную электро- и радиотехнику.

Значительный вклад в развитие новой области физики внес французский физик Андре Мари Ампер, в честь которого и названа единица силы тока.
Действие проводника с током на магнитную стрелку показывает, что в пространстве, окружающем такой проводник, существует магнитное поле, связанное с током в проводнике. Таким образом, причина появления этого поля — движение электрических зарядов, так как проводник, по которому проходит ток, остается электрически нейтральным и сила Кулона между ним и стрелкой не действует.

Ампер в 1820 г. обнаружил, что два гибких проводника с током (рис. 137, а), расположенных параллельно друг другу, притягиваются (рис. 137, б), если по ним проходят токи одинакового направления, и отталкиваются (рис. 137, в), если по ним проходят токи противоположных направлений.

Вектор магнитной индукции векторная скалярная

С увеличением силы тока проводники будут притягиваться или отталкиваться сильнее. При уменьшении или увеличении расстояния между проводниками их взаимодействие соответственно возрастает или убывает.

Притяжение или отталкивание электрически нейтральных проводников при прохождении через них электрического тока называют магнитным взаимодействием токов. Так как ток — это упорядоченное движение электрических зарядов, то магнитное взаимодействие токов — это взаимодействие упорядоченно движущихся электрических зарядов. Магнитное взаимодействие движущихся зарядов объясняется тем, что всякий движущийся заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся заряды.

Основные свойства магнитного поля:

  1. оно материально, т. е. является одной из форм существования материи;
  2. порождается только движущимися электрическими зарядами;
  3. действует только на движущиеся электрические заряды;
  4. обнаруживается по действию на проводники с током, на движущиеся заряженные частицы иди на магнитные материалы.

Для силовой характеристики магнитного поля был введен вектор индукции Вектор магнитной индукции векторная скалярнаямагнитного поля (или просто индукции поля). Модуль вектора Вектор магнитной индукции векторная скалярнаяможно определить по аналогии с силовой характеристикой электрического поля — напряженностью, которая вводилась как отношение электрической силы, действующей на пробный электрический заряд со стороны поля, к величине этого заряда. В экспериментах по взаимодействию магнитного поля и проводников с током было обнаружено, что модуль силы взаимодействия пропорционален силе тока I в проводнике и длине части проводника l, находящейся в области магнитного поля индукции Вектор магнитной индукции векторная скалярная.

Подчеркнем, что рассматриваемая сила взаимодействия зависит также от угла а между прямолинейным проводником и направлением вектора индукции магнитного поля Вектор магнитной индукции векторная скалярная. Эта сила равна нулю, если направление вектора Вектор магнитной индукции векторная скалярнаяпараллельно проводнику, и максимальна, если направление вектора Вектор магнитной индукции векторная скалярнаяперпендикулярно ему.

Таким образом, модуль вектора индукции магнитного поля можно определить как отношение максимальной магнитной силы, действующей на проводник с током единичной длины, к силе тока:
Вектор магнитной индукции векторная скалярная

За направление вектора индукции магнитного поля в данной точке пространства принимается направление, указываемое северным полюсом свободной магнитной стрелки, которая является аналогом пробного заряда в электростатике (рис. 138).

Вектор магнитной индукции векторная скалярная
В СИ единицей индукции магнитного поля является тесла:
Вектор магнитной индукции векторная скалярная

Один тесла — индукция такого однородного магнитного поля, в котором на один метр длины прямого проводника, перпендикулярного вектору магнитной индукции Вектор магнитной индукции векторная скалярнаяс током силой один ампер действует сила один ньютон.

Наименование «тесла» присвоено единице индукции магнитного поля в честь сербского ученого, инженера и видного изобретателя электро- и радиотехники Николы Тесла.

Поле с индукцией 1 Тл — это очень сильное магнитное поле. Так, индукция магнитного поля Земли у ее поверхности составляет примерно Вектор магнитной индукции векторная скалярнаядля обычных магнитов — не превышает 0,01 Тл, для мощных электромагнитов достигает величин от 1 Тл до 2 Тл, для сверхпроводящих электромагнитов — свыше 10 Тл.

На рисунках принято обозначать направление индукции магнитного поля, перпендикулярного плоскости рисунка, специальными символами. Символ Вектор магнитной индукции векторная скалярнаяозначает, что линии Вектор магнитной индукции векторная скалярнаявходят в плоскость рисунка (как оперение улетающей от Вас стрелы), символ Вектор магнитной индукции векторная скалярная— выходят из нее (как наконечник стрелы, летящей к Вам).

Для магнитного поля, так же как и для электрического, справедлив принцип суперпозиции:

  • если магнитное поле в данной точке пространства создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником с током в отдельности:

Вектор магнитной индукции векторная скалярная

Графически магнитные поля изображаются с помощью специальных линий, называемых линиями индукции магнитного поля. Касательная к любой линии в каждой точке направлена вдоль индукции магнитного поля Вектор магнитной индукции векторная скалярнаяСвойства линий индукции, с одной стороны, сходны со свойствами силовых линий электростатического поля — они не могут пересекаться; густота линий больше там, где модуль вектора Вектор магнитной индукции векторная скалярнаябольше. С другой стороны, отличаются — линии индукции магнитного поля всегда замкнуты, так как магнитное поле является вихревым (непотенциальным).

Для определения направления вектора индукции магнитного поля прямого тока Джеймс Клерк Максвелл предложил правило буравчика (рис. 139): направление вектора индукции магнитного поля соответствует направлению вращения буравчика (правого винта), если движение острия буравчика совпадает с направлением тока в проводнике.

Вектор магнитной индукции векторная скалярная

Правило буравчика можно также использовать для определения направления вектора индукции магнитного поля в центре кругового проводника с током (рис. 140): направление вектора индукции магнитного поля соответствует направлению движения острия буравчика, если вращение рукоятки буравчика совпадает с направлением тока в проводнике.

Вектор магнитной индукции векторная скалярная

Для определения направления линий индукции магнитного поля прямолинейного проводника с током можно также использовать правило обхвата правой руки (рис. 141): проводник мысленно обхватывается правой рукой так, чтобы большой палец указывал направление тока, тогда остальные пальцы окажутся согнуты в направлении линий индукции магнитного поля.

Вектор магнитной индукции векторная скалярная

Для определения направления силы взаимодействия магнита и витка с током необходимо знать положение магнитных полюсов витка. Это можно сделать с помощью правила буравчика, анализируя места «выхода» линий индукции магнитного поля из плоскости витка и их «входа» в плоскости витка.
Для определения «полюсов» кругового тока удобно пользоваться правилом часовой стрелки (рис. 142):

  • северный полюскругового тока находится с той стороны плоскости витка с током, глядя на которую, мы видим прохождение тока через виток в направлении против хода часовой стрелки;южный полюсс той стороны витка, глядя на которую, видим прохождение тока через виток по ходу часовой стрелки.

Вектор магнитной индукции векторная скалярная

Примеры магнитных полей

Для решения задач важно знать формулы, которые описывают магнитные поля, создаваемые проводниками с токами для их различных простейших конфигураций.

Модуль индукции магнитного поля бесконечного прямолинейного проводника с током силой I на расстоянии r от проводника в вакууме (рис. 143, 144) определяется по формуле

Вектор магнитной индукции векторная скалярная
где Вектор магнитной индукции векторная скалярная— магнитная постоянная.
Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Модуль индукции магнитного поля тока силой I в центре тонкого кругового витка радиусом r в вакууме (рис. 145, 146) определяется по формуле
Вектор магнитной индукции векторная скалярная

Катушка, витки которой последовательно обходятся током в определенном направлении, называется соленоидом. Если длина соленоида гораздо больше радиуса его витков, магнитное поле внутри него при плотной намотке витков можно считать однородным (по аналогии с электрическим полем внутри плоского конденсатора). Магнитное поле соленоида аналогично магнитному полю прямого магнита. Для определения полюсов соленоида удобно пользоваться правилом буравчика или правилом часовой стрелки.
Термин «соленоид» (от греческого слова Вектор магнитной индукции векторная скалярнаятрубкообразный) введен Ампером в 1826 г.

Вектор магнитной индукции векторная скалярная

Модуль индукции магнитного поля, создаваемого током силой I, проходящим по соленоиду внутри него, в точках, достаточно удаленных от его концов, в вакууме (рис. 147, 148) определяется по формуле
Вектор магнитной индукции векторная скалярная
где N — число витков обмотки соленоида, l — длина соленоида.

Интересно, что замкнутый в кольцо соленоид (тороид) не имеет полюсов, так как все его линии магнитной индукции замыкаются внутри него (рис. 149).

Вектор магнитной индукции векторная скалярная

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Магнитное поле Земли
  • Ядерная энергетика в физике
  • Динамика в физике
  • Статика в физике
  • Генератор электрического тока в физике
  • Электродвигатель в физике
  • Трансформатор — устройство, принцип работы
  • Магнитное поле в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Скалярные и векторные величины, основные определения.Скачать

Скалярные и векторные величины, основные определения.

Индукция магнитного поля

Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Вектор магнитной индукции

Определение
Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Видео:Сравнение скалярного и векторного произведений векторов (видео 16) | Магнетизм | ФизикаСкачать

Сравнение скалярного и векторного произведений векторов (видео 16) | Магнетизм | Физика

ÐагниÑное поле

ЭÑо ÑловоÑоÑеÑание знакомо нам Ñо ÑколÑной ÑкамÑи. Ðо многие Ñже забÑли о Ñом, ÑÑо оно ознаÑаеÑ. ХоÑÑ ÐºÐ°Ð¶Ð´Ñй из Ð½Ð°Ñ Ð¿Ð¾Ð¼Ð½Ð¸Ñ, ÑÑо магниÑное поле ÑпоÑобно воздейÑÑвоваÑÑ Ð½Ð° пÑедмеÑÑ, пÑиÑÑÐ³Ð¸Ð²Ð°Ñ Ð¸Ð»Ð¸ оÑÑÐ°Ð»ÐºÐ¸Ð²Ð°Ñ Ð¸Ñ. Ðо, помимо ÑÑого, Ñ Ð½ÐµÐ³Ð¾ еÑÑÑ Ð¸ дÑÑгие оÑобенноÑÑи: напÑимеÑ, магниÑное поле Ð¼Ð¾Ð¶ÐµÑ Ð²Ð¾Ð·Ð´ÐµÐ¹ÑÑвоваÑÑ Ð½Ð° ÑлекÑÑиÑеÑки заÑÑженнÑе обÑекÑÑ, а ÑÑо знаÑиÑ, ÑÑо ÑлекÑÑиÑеÑÑво и магнеÑизм ÑеÑно ÑвÑÐ·Ð°Ð½Ñ Ð¼ÐµÐ¶Ð´Ñ Ñобой, и одно Ñвление Ð¼Ð¾Ð¶ÐµÑ Ð¿Ð»Ð°Ð²Ð½Ð¾ пеÑеÑекаÑÑ Ð² дÑÑгое. УÑÑнÑе понÑли ÑÑо доÑÑаÑоÑно давно и поÑÑÐ¾Ð¼Ñ ÑÑали назÑваÑÑ Ð²Ñе ÑÑи пÑоÑеÑÑÑ Ð²Ð¼ÐµÑÑе одним Ñловом — «ÑлекÑÑомагниÑнÑе Ñвлениѻ. Ðа Ñамом деле ÑлекÑÑомагнеÑизм — доволÑно инÑеÑеÑÐ½Ð°Ñ Ð¸ еÑÑ Ð½Ðµ до конÑа изÑÑÐµÐ½Ð½Ð°Ñ Ð¾Ð±Ð»Ð°ÑÑÑ Ñизики. Ðна оÑÐµÐ½Ñ Ð¾Ð±ÑиÑна, и Ñе знаниÑ, ÑÑо Ð¼Ñ Ð¼Ð¾Ð¶ÐµÐ¼ здеÑÑ Ð¸Ð·Ð»Ð¾Ð¶Ð¸ÑÑ Ð²Ð°Ð¼, — ÑÑо оÑÐµÐ½Ñ Ð¼Ð°Ð»Ð°Ñ ÑаÑÑÑ Ñого, ÑÑо извеÑÑно ÑеловеÑеÑÑÐ²Ñ Ð¾ магнеÑизме ÑегоднÑ.

Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная

Ð ÑейÑÐ°Ñ Ð¿ÐµÑейдÑм непоÑÑедÑÑвенно к пÑедмеÑÑ Ð½Ð°Ñей ÑÑаÑÑи. СледÑÑÑий Ñаздел бÑÐ´ÐµÑ Ð¿Ð¾ÑвÑÑÑн ÑаÑÑмоÑÑÐµÐ½Ð¸Ñ Ð½ÐµÐ¿Ð¾ÑÑедÑÑвенно ÑÑÑÑойÑÑва каÑÑÑки индÑкÑивноÑÑи.

Вектор магнитной индукции векторная скалярная

Видео:СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB

dB = µ0 *I*dl*sin α /4*π*r2,

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме

Вектор магнитной индукции векторная скалярная
Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

Для кругового движения она выглядит так:

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная Вектор магнитной индукции векторная скалярная

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

Вектор магнитной индукции векторная скалярная
Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Вектор магнитной индукции векторная скалярная
Математическая формула теоремы о циркуляции

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Советуем изучить Антенна НТВ плюс

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900)

Вектор магнитной индукции векторная скалярная
Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Видео:ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Видео:Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | Инфоурок

Магнитное поле электромагнита (соленоида)

Определение
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

Модуль напряженности магнитного поля в центральной части соленоида:

Видео:Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Вектор магнитной индукции векторная скалярная

Урок 3. Магнитная индукция. Действие магнитного поля на проводник и движущуюся заряжённую частицу

Перечень вопросов, рассматриваемых на уроке:

2) вектор магнитной индукции, линии магнитной индукции;

3) сила Ампера, сила Лоренца;

4) правило буравчика, правило левой руки.

Магнитная индукция – векторная величина, характеризующая величину и направление магнитного поля.

Сила Ампера – сила, действующая со стороны магнитного поля на проводник с током.

Сила Лоренца – сила, действующая со стороны магнитного поля на движущую частицу с зарядом.

Правило левой руки – правило для определения направления силы Ампера и силы Лоренца.

Соленоид – проволочная катушка.

Рамка с током – небольшой длины катушка с двумя выводами из скрученного гибкого проводника с током, способная поворачиваться вокруг оси, проходящей через диаметр катушки.

Основная и дополнительная литература по теме урока

Мякишев Г.Я., Буховцев Б.Б. Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций. М.: Просвещение, 2014. – С. 3 – 20

Основное содержание урока

Магнитное поле – особый вид материи, которая создаётся электрическим током или постоянными магнитами. Для демонстрации действия и доказательства существования магнитного поля служат магнитная стрелка, способная вращаться на оси, или небольшая рамка (или катушка) с током, подвешенная на тонких скрученных гибких проводах.

Рамка с током и магнитная стрелка под действием магнитного поля поворачиваются так, что северный полюс (синяя часть) стрелки и положительная нормаль рамки указывают направление магнитного поля.

Магнитное поле, созданное постоянным магнитом или проводником с током, занимает всё пространство в окрестности этих тел. Магнитное поле принято (удобно) изображать в виде линий, которые называются линиями магнитного поля. Магнитные линии имеют вихревой характер, т.е. линии не имеют ни начала, ни конца, т.е. замкнуты. Направление касательной в каждой точке линии совпадает с направлением вектора магнитной индукции. Поля с замкнутыми линиями называются вихревыми.

Магнитное поле характеризуется векторной величиной, называемой магнитной индукцией. Магнитная индукция характеризует «силу» и направление магнитного поля – это количественная характеристика магнитного поля.

Она обозначается символом Вектор магнитной индукции векторная скалярнаяЗа направление вектора магнитной индукции принимают направление от южного полюса к северному магнитной стрелки, свободно установившейся в магнитном поле.

Направление магнитного поля устанавливают с помощью вектора магнитной индукции.

Направление вектора магнитной индукции прямого провода с током определяют по правилу буравчика (или правого винта).

Правило буравчика звучит следующим образом:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Направление магнитного поля внутри соленоида определяют по правилу правой руки.

Определим модуль вектора магнитной индукции.

Наблюдения показывают, что максимальное значение силы, действующей на проводник, прямо пропорционально силе тока, длине проводника, находящегося в магнитном поле.

Тогда, зависимость силы от этих двух величин выглядит следующим образом

Вектор магнитной индукции векторная скалярная

Отношение Вектор магнитной индукции векторная скалярнаязависит только от магнитного поля и может быть принята за характеристику магнитного поля в данной точке.

Величина, численно равная отношению максимальной силы, действующей на проводник с током, на произведение силы тока и длины проводника, называется модулем вектора магнитной индукции:

Вектор магнитной индукции векторная скалярная

Единицей измерения магнитной индукции является 1 тесла (Тл).

Сила, действующая на проводник с током в магнитном поле, равна произведению модуля магнитной индукции, силы тока, длины проводника и синуса угла между вектором магнитной индукции и направлением тока:

Вектор магнитной индукции векторная скалярная

где α – угол между вектором B и направлением тока.

Направление силы Ампера определяется правилом левой руки:

Если ладонь левой руки развернуть так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 0 большой палец покажет направление силы Ампера.

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля. Её численное значение равно произведению заряда частицы на модули скорости и магнитной индукции и синус угла меду векторами скорости и магнитной индукции:

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная– заряд частицы;

Вектор магнитной индукции векторная скалярная– скорость частицы;

B – модуль магнитной индукции;

Вектор магнитной индукции векторная скалярная– угол между векторами скорости частицы и магнитной индукции.

Направление силы Лоренца также определяют по правилу левой руки:

Если четыре вытянутых пальца левой руки направлены вдоль вектора скорости заряженной частицы, а вектор магнитной индукции направлен в ладонь, то отведённый на 90 0 большой палец покажет направление силы Лоренца. Если частица имеет заряд отрицательного знака, то направление силы Лоренца противоположно тому направлению, которое имела бы положительная частица.

Получим формулы для радиуса окружности и периода вращения частицы, которая влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции, применяя формулы второго закона Ньютона и центростремительного ускорения.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Согласно 2-му закону Ньютона

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Время, за которое частица делает полный оборот (период обращения), равно:

Вектор магнитной индукции векторная скалярная

Многим юным бывает досадно, что они не родились в старые времена, когда делались открытия. Им кажется, что теперь всё известно и никаких открытий на их долю не осталось.

Одной из нераскрытых тайн является механизм земного магнитного поля. Как же и чем вызывается магнитное поле Земли? Подумайте и может быть…

Одна из возможных гипотез.

Как известно, ядро Земли имеет высокую температуру

и высокую плотность. Судя по исследованиям, в самом центре содержится твёрдое ядро. При вращении Земли вокруг своей оси центр тяжести не совпадает с геометрическим центром из-за притяжения Солнца. В результате сместившееся из центра ядро вращаясь относительно оболочки Земли вызывает такое же движение жидкой расплавленной массы мантии, как чайная ложка, перемешивающая воду в стакане. Получается не что иное, как направленное движение зарядов. Есть электрический ток, а он, в свою очередь, создаёт магнитное поле.

Разбор тренировочных заданий

1. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная— точка означает, что магнитная индукция направлена на нас из глубины плоскости рисунка.

Используя правило левой руки, определяем направление силы Ампера:

Левую руку располагаем так, чтобы линии магнитной индукции входили в ладонь, 4 пальца направим вниз по направлению тока, тогда отогнутый на 90 0 большой палец покажет направление силы Ампера, т. е. она направлена влево.

2. По проводнику длиной 40 см протекает ток силой 10 А. Чему равна индукция магнитного поля, в которое помещён проводник, если на проводник действует сила 8 мН?

(Ответ выразите в мТл).

3. Определите модуль силы, действующей на проводник длиной 50 см при силе тока 10 А в магнитном поле с индукцией 0,15 Тл. (Ответ выразите в мН).

4. Протон в магнитном поле с индукцией 0,01 Тл описал окружность радиусом 10 см. Найдите скорость протона. (Ответ выразите в км/с, округлив до десятков)

6. Электрон движется в однородном магнитном поле с индукцией 3,14мТл. Чему равен период обращения электрона? (Ответ выразите в наносекундах, округлив до целых)

Запишем формулу модуля магнитной индукции:

Вектор магнитной индукции векторная скалярная

B = 0,008 Н / ( 0,4м·10 A) = 0,002 Tл = 2 мTл.

Запишем формулу силы Ампера:

Вектор магнитной индукции векторная скалярная

F = 0,l5 Tл· 10 A· 0,5 м = 0,75 Н = 750 мН

Заряд протона равен: q₀ = l,6·l0⁻ˡ⁹ Кл,

масса протона: m = l,67·l0⁻²⁷ кг.

Согласно 2-му закону Ньютона:

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

v = ( l,6·l0⁻ˡ⁹ Кл·0,l м·0,0l Tл) / l,67·l0⁻²⁷ кг ≈ 0,00096·l0⁸ м/с ≈ l00 км/с.

Найти: Вектор магнитной индукции векторная скалярная

Заряд электрона равен: q₀ = l,6·l0⁻ˡ⁹ Кл.

Используем формулу силы Лоренца:

Вектор магнитной индукции векторная скалярная.

Выразим из формулы силы скорость, учитывая, что sin90°=l,

Вектор магнитной индукции векторная скалярная

v = 3,6·l0⁻¹² Н / (l,6·l0⁻ˡ⁹ Кл· l,8 Tл) = l,25·l0⁷м/с = l2500 км/с.

Ответ: v = l2500 км/с.

B = 3,l4 мТл = 3,l4·l0⁻³ Tл,

Масса электрона равна: m = 9,l·l0⁻³¹ кг.

Время, за которое частица делает полный оборот (период обращения), равно:

Вектор магнитной индукции векторная скалярная

T = 2·3,l4·9,l·l0⁻³¹ кг/( l,6·l0⁻ˡ⁹ Кл·3,l4·l0⁻³ Tл) = ll,375·l0⁻⁹ с ≈ ll нс.

Видео:Магнитное поле. Вектор магнитной индукцииСкачать

Магнитное поле. Вектор магнитной индукции

Магнитная индукция

Магнитная индукция — это силовая характеристика магнитного поля в выбранной точке пространства. Она определяет силу, с которой магнитное поле воздействует на заряженную частицу, что движется внутри него. Магнитная индукция считается фундаментальной характеристикой магнитного поля (как напряжённость для электрического поля).

Магнитная индукция описывает магнитную силу (вектор) на тестовом объекте (например, на куске железа) в каждой точке пространства. Простыми словами: если естественный магнит поднести к магнитным веществам (таким, как железо, никель, кобальт и т. д.), это вызовет в них магнитные свойства, которые называются «магнитной индукцией». Магнитная индукция используется для создания искусственных магнитов.

Магнитная индукция также называется плотностью магнитного потока.

Магнитная индукция измеряется:

Соотношение между Тл и Гс: 1 Тл = 10 000 Гс.

Магнитная индукция — это векторная величина и обозначается буквой B со стрелочкой:

Вектор магнитной индукции векторная скалярная

Индукция (от лат. inducere — вводить, наведение) — производство токов в цепи под действием магнита или другого тока.

Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Формулы вычисления магнитной индукции

Формула магнитной индукции:

Другие формулы, где встречается B

Эти формулы также можно использовать для её расчёта.

Сила Ампера:

Сила Лоренца:

Магнитный поток:

Видео:14. Вектор магнитной индукции. Правило правого винта.Скачать

14. Вектор магнитной индукции. Правило правого винта.

Электромагнитная индукция и магнитная индукция: какая между ними разница?

Электромагнитная индукция — это производство электродвижущей силы, создаваемой в результате относительного движения между магнитным полем и проводником.

Магнитная индукция может производить постоянный магнит, но может и не производить.

Электромагнитная индукция создаёт ток, но таким образом, что этот созданный ток противодействует изменению магнитного поля.

В электромагнитной индукции используются магниты и электрические цепи, а в магнитной индукции используются только магниты и магнитные материалы.

Видео:Математика без Ху!ни. Свойства скалярного и векторного произведений.Скачать

Математика без Ху!ни. Свойства скалярного и векторного произведений.

Магнитная индукция

Вектор магнитной индукции векторная скалярнаяКлассическая электродинамика
Вектор магнитной индукции векторная скалярная
Электричество · Магнетизм
Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток
Известные учёные
Генри Кавендиш
Майкл Фарадей
Никола Тесла
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен
См. также: Портал:Физика

Магни́тная инду́кция Вектор магнитной индукции векторная скалярная— векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой Вектор магнитной индукции векторная скалярнаямагнитное поле действует на заряд Вектор магнитной индукции векторная скалярная, движущийся со скоростью Вектор магнитной индукции векторная скалярная.

Более конкретно, Вектор магнитной индукции векторная скалярная— это такой вектор, что сила Лоренца Вектор магнитной индукции векторная скалярная, действующая со стороны магнитного поля [1] на заряд Вектор магнитной индукции векторная скалярная, движущийся со скоростью Вектор магнитной индукции векторная скалярная, равна

Вектор магнитной индукции векторная скалярнаяВектор магнитной индукции векторная скалярная

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора Вектор магнитной индукции векторная скалярнаяперпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена [2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Содержание

Видео:Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полей

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряженность магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

В магнитостатике

В магнитостатическом пределе [4] наиболее важными являются:

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции Вектор магнитной индукции векторная скалярная:

Видео:Вычисление скалярного и векторного произведений векторов (видео 17) | Магнетизм | ФизикаСкачать

Вычисление скалярного и векторного произведений векторов (видео 17) | Магнетизм | Физика

Магнитная индукция. Определение и описание явления.

Вектор магнитной индукции векторная скалярнаяМагнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина ), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Вектор магнитной индукции векторная скалярная

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Видео:Основы кинематики. Тема 2. Скалярные и векторные величины. Действия над векторамиСкачать

Основы кинематики. Тема 2. Скалярные и векторные величины. Действия над векторами

Формула магнитной индукции Вектор магнитной индукции векторная скалярная

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Видео:Скалярные и векторные поля. ТемаСкачать

Скалярные и векторные поля. Тема

Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Вектор магнитной индукции векторная скалярная

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.

Магнитное действие электрического тока

1820 г. X. Эрстед — датский физик, открыл магнитное дей­ствие тока. (Опыт: действие электрического тока на магнитную стрелку). 1820 г. А. Ампер — французский ученый, открыл механическое взаимо­действие токов и установил закон это­го взаимодействия.

Вектор магнитной индукции векторная скалярная

Магнитное взаимодействие, как и электрическое, удобно рассматриватьвводя понятие магнитного поля:

Вектор магнитной индукции векторная скалярная

Для двух параллельных бесконечно длинных проводников было установлено:

противоположно направленные токи отталкиваются,

однонаправленные токи притягиваются,

причем Вектор магнитной индукции векторная скалярная, где k — коэффициент пропорциональности.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

В СИ удобно ввести магнитную проницаемость вакуума Вектор магнитной индукции векторная скалярная.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции.

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Вектор магнитной индукции векторная скалярная

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

Вектор магнитной индукции векторная скалярная

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

Модуль вектора магнитной индукции

Отсюда Вектор магнитной индукции векторная скалярная.

Таким образом, модуль вектора магнитной индукции Вектор магнитной индукции векторная скалярнаяесть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Магнитный поток

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная, где Вcosα представляет собой проекцию вектора В на нормаль к плоскости контура. Магнитный поток показывает, какое количество линий магнитной индукции пронизывает данный контур.

Вектор магнитной индукции векторная скалярная

Вектор магнитной индукции векторная скалярная

Опыт показывает, что линии магнитной индукции всегда замкнуты, и полный магнитный поток через замкнутую поверхность равен нулю. Этот факт является следствием отсутствия магнитных зарядов в природе.

Поделиться или сохранить к себе: