- Предел и непрерывность вектор-функции.
- Понятие вектор-функции.
- Предел вектор-функции.
- Свойства пределов вектор-функций.
- Непрерывность вектор-функции.
- Производная и дифференциал вектор-функции.
- Производная вектор-функции.
- Дифференциал вектор-функции.
- Замена переменного.
- Теорема Лагранжа и локальная формула Тейлора для вектор-функции.
- Основные понятия и определения дифференциальных уравнений
- Теорема существования и единственности решения задачи Коши
- Условие Липшица
- Вектор функции дифференциальные уравнения
- 3.1. Модель рынка с прогнозируемыми ценами.
- 🎥 Видео
Видео:Дифференциальные уравнения. 11 класс.Скачать
Предел и непрерывность вектор-функции.
Понятие вектор-функции.
Если каждому значению (tin E), где (Esubsetmathbb), поставлен в соответствие вектор (r(t)) трехмерного пространства, то говорят, что на множестве (E) задана векторная функция (r(t)) скалярного аргумента (t).
Пусть в пространстве фиксирована прямоугольная система координат (Oxyz). Тогда задание вектор-функции (r(t), tin E), означает задание координат (x(t), y(t), z(t)) вектора (r(t), tin E). Если (i,j,k) — единичные векторы координатных осей, то
$$
r(t)=x(t)i+y(t)j+z(t)k,qquad tin E,nonumber
$$
или
$$
r(t)=(x(t),y(t),z(t)).nonumber
$$
Если (z(t)=0) при всех (tin E), то вектор-функцию (r(t)) называют двумерной.
В случае, когда начало каждого из векторов (r(t)) совпадает с началом координат (рис. 21.1), эти векторы называют радиус-векторами, а множество их концов — годографом вектор-функции (r(t)), (tin E), который можно рассматривать как траекторию точки (M(t)) конца вектора (r(t)), если считать, что (t) — время.
Предел вектор-функции.
Вектор (a) называют пределом вектор-функции (r(t)) в точке (t_0) и пишут (displaystyle lim_<trightarrow t_>r(t)=a) или (r(t)rightarrow a) при (trightarrow t_0), если
$$
lim_<trightarrow t_> |r(t)-a|=0,label
$$
то есть длина вектора (r(t)-a) стремится к нулю при (trightarrow t_0).
Рис. 20.1
Если заданы (r(t)=(x(t),y(t),z(t))) и (a=(a_,a_,a_)), то
$$
lim_<trightarrow t_>r(t)=alabel
$$
тогда и только тогда, когда
$$
x(t)rightarrow a_1, y(t)rightarrow a_2, z(t)rightarrow a_3quad при trightarrow t_0.label
$$
Поэтому, если (r(t)rightarrow a) при (trightarrow t_0), то есть выполняется условие eqref, то выполняется условие eqref.
Обратно: если выполняются условия eqref, то из равенства eqref следует, что выполнено условие eqref. (bullet)
При доказательстве свойств предела вектор-функции удобно использовать следующее очевидное утверждение: условие eqref выполняется в том и только том случае, когда
$$
r(t)=a+alpha(t),nonumber
$$
где (alpha(t)) — бесконечно малая вектор-функция, то есть
$$
alpha(t)rightarrow 0quad mbox trightarrow t_.nonumber
$$
Свойства пределов вектор-функций.
(circ) Это свойство следует из неравенства
$$
||r(t)|-|a|| leq |r(t)-a|.qquad bulletnonumber
$$
Если (r(t)rightarrow a) при (trightarrow t_), а скалярная функция (f(t)) такова, что (f(t)rightarrow A) при (trightarrow t_), то (f(t)r(t)rightarrow Aa) при (trightarrow t_), то есть
$$
lim_f(t)r(t)=lim_<trightarrow t_>f(t)lim_r(t).label
$$
(circ) Из определений пределов скалярной функции и вектор-функции следует, что (r(t)=a+alpha(t), f(t)=A+beta(t)), где (alpha(t)) — бесконечно малая вектор-функция, (beta(t)) — бесконечно малая функция при (trightarrow t_0). Поэтому (f(t)r(t)=Aa+gamma(t)), где (gamma(t)=Aalpha(t)+beta(t)a+beta(t)alpha(t)) — бесконечно малая вектор-функция при (trightarrow t_0), откуда получаем равенство eqref. (bullet)
(circ) По условию (r_(t)=a_+alpha_), где (a_i(t)rightarrow 0) при (trightarrow t_ (i=1,2)). Поэтому (r_1(t)+r_2(t)=a_1+a_2+beta(t)), где (beta(t)=alpha_(t)+alpha_2(t)rightarrow 0) при (trightarrow t_), откуда следует eqref. Докажем формулу eqref. В силу свойств скалярного произведения
$$
(r_(t),r_2(t))-(a_1,a_2)=(alpha_(t),a_)+(alpha_(t),a_1)+(alpha_1(t),alpha_2(t)),nonumber
$$
причем в правой части этого равенства — бесконечно малая функция, так как (alpha_(t),alpha_(t)) — бесконечно малые вектор-функции и (|(p,q)| leq |p|cdot|q|) для любых векторов (p) и (q).
Аналогично доказывается формула eqref, в этом случае следует воспользоваться неравенством (|[p,q]| leq |p|cdot|q|). (bullet)
Непрерывность вектор-функции.
Вектор-функцию (r(t)) называют непрерывной при (t=t_), если
$$
lim_<trightarrow t_>r(t)=r(t_0).label
$$
Непрерывность вектор-функции (r(t)=(x(t),y(t),z(t))) при (t=t_) в силу эквивалентности условий eqref и eqref означает, что ее координаты (x(t),y(t),z(t)) непрерывны в точке (t_).
Назовем вектор-функцию (Delta r=r((t_0+Delta t)-r(t_0)) приращением вектор-функции (r(t)) в точке (t_). Тогда условие eqref означает, что
$$
Delta rrightarrow 0quad приquad Delta trightarrow 0.label
$$
Из определения непрерывности вектор-функции и свойств пределов векторных функций следует, что сумма, векторное и скалярное произведения вектор-функций (r_1(t)) и (r_2(t)) являются непрерывными функциями при (t=t_), если вектор-функции (r_1(t)) и (r_2(t)) непрерывны в точке (t_).
Видео:Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать
Производная и дифференциал вектор-функции.
Производная вектор-функции.
Если существует (displaystyle lim_frac) где (Delta r=r(t_0+Delta t)-r(t_0)), то этот предел называют производной вектор-функции (r(t)) в точке (t_0) и обозначают (r'(t_0)) или (dot(t_0)).
Таким образом,
$$
r'(t_)=lim_frac<r(t_+Delta t)-r(t_)>.label
$$
Аналогично вводится понятие второй производной
$$
r″(t_)=lim_frac<r'(t_+Delta t)-r'(t_)>nonumber
$$
и производной порядка (n > 2) вектор-функции. Заметим, что если (r(t)=(x(t),y(t),z(t))), то
$$
r'(t_)=(x'(t_0),y'(t_0),z'(t_0))label
$$
Утверждение eqref следует из определения eqref и свойств пределов вектор-функций.
Аналогично, если существует (r″(t_)), то
$$
r″(t_)=(x″(t_0),y″(t_0),z″(t_0)).nonumber
$$
Из определения производной следует, что (Delta r=r'(t_0)Delta t+alpha(Delta t)Delta t), где (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0), и потому (Delta rrightarrow 0) при (Delta trightarrow 0). Таким образом, выполняется условие eqref, то есть вектор-функция (r(t)), имеющая производную в точке (t_), непрерывна при (t=t_).
(circ) Формулы eqref-eqref справедливы в точке (t), если в этой точке соответствующие функции имеют производные. Ограничимся доказательством формулы eqref. Пусть (Delta r_) — приращение вектор-функции (r_k(t)), соответствующее приращению аргумента (Delta t), то есть (Delta r_k=r_k(t+Delta t)-r_k(t), k=1,2). Тогда, используя свойства скалярного произведения и свойства пределов вектор-функций, получаем
$$
begin
(r_,r_)’=displaystylelim_frac<(r_(t+Delta t),r_(t+Delta t))-(r_(t),r_(t))>=\
=lim_left[left(r_(t),frac<Delta r_(t)>right)+left(frac<Delta r_(t)>,r_2(t)right)+left(frac<Delta r_(t)>,Delta r_2(t)right)right]=\
=(r_1,r_2′)+(r_1′,r_2),
endnonumber
$$
так как (displaystyle frac<triangle mathrm_>rightarrow r_‘(t)) при (Delta trightarrow 0 (i=1,2)) и (Delta r_2rightarrow 0) при (Delta trightarrow 0). (bullet)
Пусть существует (r'(t)) для всех (tin(alpha,beta)) и пусть (|r(t)|=C=const) для всех (tin(alpha,beta)).
Доказать, что ((r(t),r'(t))=0), то есть векторы (r(t)) и (r'(t)) ортогональны.
(triangle) Используя формулу (|r(t)|^2=(r(t),r(t))), правило дифференцирования скалярного произведения (формула eqref) и условие (|r(t)|=C), получаем ((r(t),r(t))’=2(r'(t),r(t))=0), так как (|r(t)|^)’=(C^)’=0). Итак,
$$
|r(t)|=CRightarrow (r(t),r'(t))=0.quadblacktrianglenonumber
$$
Дифференциал вектор-функции.
Вектор-функцию (r(t)), определенную в некоторой окрестности точки (t_), называют дифференцируемой при (t=t_), если ее приращение (Delta r=r(t_+Delta t)-r(t_)) в точке (t_) представляется в виде
$$
Delta r=aDelta t+Delta talpha(Delta t),label
$$
где вектор (a) не зависит от (Delta t), (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0).
Полагая (dt=Delta t), запишем равенство eqref в виде
$$
dr=r’dt,nonumber
$$
где опущено обозначение аргумента функции (r’). Отсюда получаем
$$
r’=frac
$$
Замена переменного.
Если функция (t=t(s)) дифференцируема при (s=s_, t(s_)=t_), а вектор-функция (r(t)) дифференцируема в точке (t_), то вектор-функция (rho(s)=r(t(s))) дифференцируема в точке (s_), а производная этой функции выражается формулой
$$
rho’ (s_0)=r_s'(t(s_0))=r_'(t_)t_‘(s_),label
$$
где индекс указывает, по какому переменному производится дифференцирование.
(circ) Функция (alpha(Delta(t))) в формуле eqref не определена при (Delta t=0). Доопределим ее при (Delta t=0), полагая (alpha(0)=0).
Так как (t=t(s)) — функция, дифференцируемая при (s=s_0), то (Delta t=t(s_+Delta s)-t(s_)rightarrow 0) при (Delta srightarrow 0). Разделив обе части равенства eqref на (Delta sneq 0), получим
$$
frac=r'(t_0)frac+alpha(Delta t)frac.label
$$
Правая часть eqref имеет при (Delta srightarrow 0) предел, равный (r'(t_0)t'(s_0)), так как (Delta trightarrow 0) при (Delta srightarrow 0) и (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0). Следовательно, существует предел в левом части eqref, и справедливо равенство eqref. Формулу eqref запишем кратко в виде равенства
$$
r_’=r_’t_’,label
$$
выражающего правило дифференцирования вектор-функции при замене переменного. (bullet)
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Теорема Лагранжа и локальная формула Тейлора для вектор-функции.
Формула Лагранжа, то есть формула
$$
r(beta)-r(alpha)=r'(xi)(beta-alpha),quad xiin(alpha,beta),label
$$
для вектор-функции, вообще говоря, неверна.
(circ) В самом деле, пусть формула eqref верна, и пусть (r(t)=(cos t,sin t)), тогда (r'(t)=(-sin t,cos t), |r'(t)|=1). Полагая (alpha=0,beta=2pi), получим из равенства eqref (0=r(2pi)-r(0)=r'(xi)2pi), что невозможно, так как (|r'(xi)|=1). (bullet)
Если вектор-функция (r(t)) непрерывна на отрезке ([alpha,beta]) и дифференцируема на интервале ((alpha,beta)), то
$$
existsxiin(alpha,beta): |r(beta)-r(alpha)|leq|r'(xi)|(beta-alpha).label
$$
(circ) Рассмотрим скалярную функцию
$$
varphi(t)=(r(beta)-r(alpha),r(t)).nonumber
$$
эта функция непрерывна на отрезке ([alpha,beta]), так как вектор-функция (r(t)) непрерывна на этом отрезке. Кроме этого, функция (varphi(t)) дифференцируема на интервале ((alpha,beta)), так как функция (r(t)) дифференцируема этом интервале, причем в силу правила дифференцирования скалярного произведения
$$
varphi'(t)=(r(beta)-r(alpha),r'(t)).nonumber
$$
По теореме Лагранжа
$$
existsxiin(alpha,beta): varphi(beta)-varphi(alpha)=varphi'(xi)(beta-alpha)label
$$
Преобразуем левую часть неравенства eqref:
$$
begin
varphi(beta)-varphi(alpha)=(r(beta)-r(alpha),r(beta))-(r(beta)-r(alpha),r(alpha))=\
=(r(beta)-r(alpha),r(beta)-r(alpha))=|r(beta)-r(alpha)|^2
endnonumber
$$
Тогда равенство eqref примет вид
$$
|r(beta)-r(alpha)|^=(r(beta)-r(alpha),r'(xi))(beta-alpha).label
$$
Если (r(beta)=r(alpha)), то неравенство eqref справедливо при любом (xiin in(alpha,beta)). Если (r(beta)neq r(alpha)), то (|r(beta)-r(alpha)| > 0). Тогда, используя неравенство (|(a,b)|leq|a|cdot|b|), из формулы eqref получим
$$
|r(beta)-r(alpha)|^leq|r(beta)-r(alpha)|cdot |r'(xi)|(beta-alpha),nonumber
$$
откуда, разделив обе части неравенства на (|r(beta)-r(alpha)| > 0), получим неравенство eqref. (bullet)
Для вектор-функции (r(t)) справедлива локальная формула Тейлора
$$
r(t)=sum_^frac<r^(t_)>(t-t_)^+varepsilon(t-t_),label
$$
где (varepsilon(t-t_0)=o((t-t_)^)) — вектор-функция такая, что (varepsilon(t-t_0)=(t-t_)^varepsilon_(t-t_)), где (varepsilon_(t-t_)rightarrow 0) при (trightarrow t_).Эта формула справедлива в предположении, что существует (r^(t_0)). Для доказательства формулы eqref достаточно воспользоваться локальной формулой Тейлора для компонент вектор-функции (r(t)).
Видео:Дифференциал функцииСкачать
Основные понятия и определения дифференциальных уравнений
Дифференциальным уравнением называется уравнение, связывающее независимую переменную , искомую функцию и её производные , т. е. уравнение вида
Если искомая функция есть функция одной независимой переменной , дифференциальное уравнение называется обыкновенным ; например,
Когда искомая функция есть функция двух и более независимых переменных, например, если , то уравнение вида
называется уравнением в частных производных. Здесь — неотрицательные целые числа, такие, что ; например
Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.
Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по на . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь
Подставляя выражения и в дифференциальное уравнение, получим тождество
График решения дифференциального уравнения называется интегральной кривой этого уравнения.
Общий вид уравнения первого порядка
Если уравнение (1) удается разрешить относительно , то получится уравнение первого порядка, разрешенное относительно производной.
Задачей Коши называют задачу нахождения решения уравнения , удовлетворяющего начальному условию (другая запись ).
Геометрически это означает, что ищется интегральная кривая, проходящая через заданную точку плоскости (рис. 1).
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Теорема существования и единственности решения задачи Коши
Пусть дано дифференциальное уравнение , где функция определена в некоторой области плоскости , содержащей точку . Если функция удовлетворяет условиям
а) есть непрерывная функция двух переменных и в области ;
б) имеет частную производную , ограниченную в области , то найдется интервал , на котором существует единственное решение данного уравнения, удовлетворяющее условию .
Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения , удовлетворяющее условию , хотя в точке не выполняются условия а) или б) или оба вместе.
1. . Здесь . В точках оси условия а) и б) не выполняются (функция и её частная производная разрывны на оси и неограниченны при ), но через каждую точку оси проходит единственная интегральная кривая (рис. 2).
2. . Правая часть уравнения и ее частная производная непрерывны по и во всех точках плоскости . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость .
3. . Правая часть уравнения определена и непрерывна во всех точках плоскости . Частная производная обращается в бесконечность при , т.е. на оси , так что при нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение . Таким образом, через каждую точку оси проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).
Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол и отрезков оси , например, и др., так что через каждую точку оси проходит бесконечное множество интегральных линий.
Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать
Условие Липшица
Замечание. Условие ограниченности производной , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .
Говорят, что функция , определенная в некоторой области , удовлетворяет в условию Липшица по , если существует такая постоянная ( постоянная Липшица ), что для любых из и любого из справедливо неравенство
Существование в области ограниченной производной достаточно для того, чтобы функция удовлетворяла в условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности ; последняя может даже не существовать. Например, для уравнения функция не дифференцируема по в точке , но условие Липшица в окрестности этой точки выполняется. В самом деле,
поскольку а . Таким образом, условие Липшица выполняется с постоянной .
Теорема. Если функция непрерывна и удовлетворяет условию Липшица по в области , то задача Коши
имеет единственное решение.
Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение
Нетрудно видеть, что функция непрерывна; с другой стороны,
и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат , так как множитель при оказывается неограниченным при .
Данное дифференциальное уравнение допускает решение где — произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию
Общим решением дифференциального уравнения (2) называется функция
зависящая от одной произвольной постоянной , и такая, что
1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной ;
2) каково бы ни было начальное условие
можно подобрать такое значение постоянной , что решение будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка принадлежит области, где выполняются условия существования и единственности решения.
Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной .
Пример 1. Проверить, что функция есть общее решение дифференциального уравнения и найти частное решение, удовлетворяющее начальному условию . Дать геометрическое истолкование результата.
Решение. Функция удовлетворяет данному уравнению при любых значениях произвольной постоянной . В самом деле,
Зададим произвольное начальное условие . Полагая и в равенстве , найдем, что . Подставив это значение в данную функцию, будем иметь . Эта функция удовлетворяет заданному начальному условию: положив , получим . Итак, функция является общим решением данного уравнения.
В частности, полагая и , получим частное решение .
Общее решение данного уравнения, т.е. функция , определяет в плоскости семейство параллельных прямых с угловым коэффициентом . Через каждую точку плоскости проходит единственная интегральная линия . Частное решение определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).
Пример 2. Проверить, что функция есть общее решение уравнения и найти частное решение, удовлетворяющее начальному условию .
Решение. Имеем . Подставляя в данное уравнение выражения и , получаем , т. е. функция удовлетворяет данному уравнению при любых значениях постоянной .
Зададим произвольное начальное условие . Подставив и вместо и в функцию , будем иметь , откуда . Функция удовлетворяет начальному условию. Действительно, полагая , получим . Функция есть общее решение данного уравнения.
При и получим частное решение .
С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку (рис.5).
Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.
Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.
Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.
Так как с геометрической точки зрения координаты и равноправны, то наряду с уравнением мы будем рассматривать уравнение .
Видео:Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Вектор функции дифференциальные уравнения
Lv 1 = f, Lv 2 = f,
То есть сумма решений линейного однородного и линейного неоднородного уравнений (с тем же L) есть решение того же неоднородного уравнения; разность двух решений линейного неоднородного уравнения есть решение линейного однородного уравнения.
2.3. Линейная зависимость вектор-функций.
Вектор-функции x 1 (t), . x k (t) называются линейно зависимыми на интервале (или на множестве) М , если найдутся такие постоянные числа c1. ck, из которых хотя бы одно не равно нулю, что при всех t Î M имеем
Вектор-функции линейно независимы на M , если они не являются линейно зависимыми на M, то есть если равенство (12) (при всех t Î M одновременно) возможно лишь в случае c1 = . = сk = 0.
Понятие линейной зависимости вектор-функций на данном множестве M, содержащем более одной точки, отличается от известного из алгебры понятия линейной зависимости векторов.
Если вектор-функции x 1 (t), . x k (t) линейно зависимы на M, то при каждом t Î M их значения являются линейно зависимыми векторами, это следует из (12). Обратное неверно.
x 1 (t) = (1,1) и x 2 (t) = (t, t)
при любом t являются линейно зависимыми векторами.
Но как вектор-функции, они на любом интервале ( α, β) линейно независимы, так как при постоянных с1 и c2 равенство
на всем интервале ( α, β) возможно лишь при с1 = с2 = 0.
Действительно, c1x 1 (t) + c2 x 2 (t) = 0 эквивалентно выполнению равенства
2.3. Детерминант Вронского.
Детерминант Вронского W (t) или вронскиан для n-мерных вектор-функций
х 1 (t). , x n ( t ) — это детерминант n-го порядка, столбцы которого состоят из координат этих вектор-функций.
Если вектор-функции x 1 (t), . x n (t) линейно зависимы, то их вронскиан W(t) ≡ 0.
Если вронскиан W(t) ≠ 0 ( $ t ), то вектор-функции x 1 (t), . x n (t) линейно независимы.
Если вектор-функции x 1 (t), . x n (t) являются решениями системы х’ = A(t)x с непрерывной матрицей A ( t ), и их вронскиан равен нулю хотя бы при одном значении t , то эти вектор-функции линейно зависимы и их вронскиан W(t) ≡ 0.
Для вектор-функций, не являющихся решениями, утверждение леммы 3 неверно. В частности, для вектор-функций примера 2
x 1 (t) = (1,1) и x 2 (t) = (t, t)
имеем: W(t) ≡ 0, а они линейно независимы.
Далее рассматриваются решения линейной системы
Фундаментальной системой решений называется любая система n линейно независимых решений.
Покажем, что фундаментальные системы существуют. Возьмем t0 Î ( α, β) и любые n линейно независимых векторов b 1 , …, b n Î R n
Пусть х 1 (t). ,x n (t) — решения системы х’ = A(t)x с начальными условиями x j (t 0 ) = b j , j = 1. ,n.
Эти решения линейно независимы, так как при t = t0 их значения — линейно независимые векторы b 1 . b n , и равенство (12) возможно только при c1 = . = cn = 0.
Общим решением системы дифференциальных уравнений называют множество функций, содержащее все решения этой системы и только их (или формулу, представляющую это множество при всевозможных значениях произвольных постоянных).
Теорема 5 (об общем решении).
Пусть x l (t). x n (t) — какие-нибудь n линейно независимых решений системы
Общее решение системы есть
Теорема 5 означает, что множество решений системы х’ = A(t)x (х Î R n ) есть n-мерное линейное пространство.
Базисом в этом пространстве служит любая фундаментальная система решений. Равенство (13) есть представление любого элемента этого пространства в виде линейной комбинации элементов базиса.
Фундаментальной матрицей системы х’ = A(t)x называется матрица X(t), столбцы которой составляют фундаментальную систему решений.
Из леммы 3 следует, что det X(t) = W(t) ≠ 0.
С помощью фундаментальной матрицы X(t) общее решение (13) записывается в виде
где с — вектор-столбец с произвольными координатами c1. сn (так как X(t)c — линейная комбинация столбцов матрицы X(t), равная правой части (13) с коэффициентами с1. сn.
Найти линейно независимые решения и фундаментальную матрицу для системы
Из второго уравнения имеем у = с1 (произвольная постоянная). Подставляя в первое уравнение, получаем х’ = с1. Отсюда х = c1t + c2.
Общее решение есть х = c1t + c2,
Полагая с1 = 1, с2 = 0, находим частное решение х1 = t,
y1 = 1, а полагая с1 = 0, с2 = 1, находим другое решение х2 = 1,
y2 = 0. Их вронскиан W(t) = -1 ≠ 0. И в силу следствия леммы 2 эти решения линейно независимы. Поэтому фундаментальной является матрица
X T = x 1 x 2 y 1 y 2 .
Теорема 6 (переход от одной фундаментальной матрицы к другой).
Пусть X(t) — фундаментальная матрица, С — неособая (det С ≠ 0) постоянная матрица n x n. Тогда Y(t) = X(t)C — фундаментальная матрица той же системы. По этой формуле из данной фундаментальной матрицы X(t) можно получить любую фундаментальную матрицу Y(t), подбирая матрицу С.
Теорема 7 . Общее решение линейной неоднородной системы (10)
есть сумма ее частного решения и общего решения линейной однородной системы
3. ПРИМЕНЕНИЕ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ЭКОНОМИКИ.
Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построению математических моделей, основой которых являются дифференциальные уравнения.
В дифференциальных уравнениях неизвестная функция содержится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функций, представляющих собой решения этих уравнений.
На этой лекции мы рассмотрим пример применения теории дифференциальных уравнений в непрерывной модели экономики, где независимой переменной является время t . Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономической динамики.
3.1. Модель рынка с прогнозируемыми ценами.
Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тенденции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функциями эти характеристики описываются соответственно первой и второй производными функции цены P ( t ).
Рассмотрим конкретный пример. Пусть функции спроса D и предложения S имеют следующие зависимости от цены Р и ее производных:
D(t) = 3P′′ – P′ – 2P +18,
S(t) = 4P′′ + P′ + 3P + 3. (14)
Принятые в (14) зависимости вполне реалистичны: поясним это на слагаемых с производными функции цены.
1. Спрос «подогревается» темпом изменения цены: если темп растет ( Р» > 0), то рынок увеличивает интерес к товару, и наоборот. Быстрый рост цены отпугивает покупателя, поэтому слагаемое с первой производной функции цены входит со знаком минус.
2. Предложение в еще большей мере усиливается темпом изменения цены, поэтому коэффициент при Р» в функции S ( t ) больше, чем в D ( t ) . Рост цены также увеличивает предложение, потому слагаемое, содержащее Р’ , входит в выражение для S ( t ) со знаком плюс.
Требуется установить зависимость цены от времени. Поскольку равновесное состояние рынка характеризуется равенством D = S , приравняем правые части уравнений (14). После приведения подобных получаем
Соотношение (15) представляет линейное неоднородное дифференциальное уравнение второго порядка относительно функции P ( t ) . Как было установлено в предыдущем пункте, общее решение такого уравнения состоит из суммы какого-либо его частного решения и общего решения соответствующего однородного уравнения
Характеристическое уравнение имеет вид
Его корни — комплексно-сопряженные числа: k 1,2 = -1 ± 2 i, и, следовательно, общее решение уравнения (16) дается формулой
где С1 и С2 — произвольные постоянные.
В качестве частного решения неоднородного уравнения (15) возьмем решение Р = P st — постоянную величину как установившуюся цену. Подстановка в уравнение (15) дает значение P st :
Таким образом, общее решение уравнения (15) имеет вид
Нетрудно видеть, что P ( t ) P st = 3 при t , т.е. все интегральные кривые имеют горизонтальную асимптоту Р = 3 и колеблются около нее. Это означает, что все цены стремятся к установившейся цене P st с колебаниями около нее, причем амплитуда этих колебаний затухает со временем.
3.2. Частные решения: задача Коши и смешанная задача.
Приведем частные решения этой задачи в двух вариантах: задача Коши и смешанная задача.
1. Задача Коши. Пусть в начальный момент времени известна цена, а также тенденция ее изменения: При t =0
Подставляя первое условие в формулу общего решения (17), получаем
P(t) = 3 + e –t (cos 2t + C2 sin 2t). (18)
Дифференцируя , имеем отсюда
Теперь реализуем второе условие задачи Коши:
Р’ (0) = 2 C2 — 1 = 1, откуда C 2 = 1 . Окончательно получаем, что решение задачи Коши имеет вид
P(t) = 3 + e –t (cos 2t + sin 2t).
или в более удобной форме:
P t = 3+ 2 e — t cos 2 t — π 4 .
2. Смешанная задача. Пусть в начальный момент времени известны цена и спрос:
Поскольку первое начальное условие такое же, как и в предыдущем случае, то имеем и здесь решение (18). Тогда производные функции Р( t ) выражаются формулами
Отсюда Р’(0) =2 C 2 — 1 и Р»( 0 ) = —4 C 2 — 3 . Подставляя эти равенства во второе условие задачи, т.е. D ( 0 ) = 16 , имеем с учетом вида D ( t ) из первой формулы (14): С2 = -1. Итак, решение данной задачи имеет вид
или в более удобной форме:
P t = 3- 2 e — t sin 2 t — π 4 .
Интегральные кривые, соответствующие задачам 1 и 2, изображены на рисунке 1.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
[1] Клюшин В. Л. Высшая математика для экономистов: Учебное пособие. — М.: ИНФРА-М, 2009. — 448 с. — (Учебники РУДН).
[2] Колемаев В. А. Экономико-математическое моделирование. Моделирование макроэкономических процессов и систем: Учебник. М.: ЮНИТИ-ДАНА, 2005. — 295 с.
[3] Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. — 2-е изд., испр. — М.: Дело, 2001. — 688 с.
[4] Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2005. – 464, ил. (Серия «Учебное пособие»).
[5] Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. — 240 с.
🎥 Видео
Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать
решить систему дифференциальных уравненийСкачать
Геометрический смысл дифференциального уравненияСкачать
Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать
Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать
Математика это не ИсламСкачать
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Решение системы дифференциальных уравнений методом ЭйлераСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать