Вектор функции дифференциальные уравнения

Вектор-функции

Видео:Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Предел и непрерывность вектор-функции.

Понятие вектор-функции.

Если каждому значению (tin E), где (Esubsetmathbb), поставлен в соответствие вектор (r(t)) трехмерного пространства, то говорят, что на множестве (E) задана векторная функция (r(t)) скалярного аргумента (t).

Пусть в пространстве фиксирована прямоугольная система координат (Oxyz). Тогда задание вектор-функции (r(t), tin E), означает задание координат (x(t), y(t), z(t)) вектора (r(t), tin E). Если (i,j,k) — единичные векторы координатных осей, то
$$
r(t)=x(t)i+y(t)j+z(t)k,qquad tin E,nonumber
$$
или
$$
r(t)=(x(t),y(t),z(t)).nonumber
$$
Если (z(t)=0) при всех (tin E), то вектор-функцию (r(t)) называют двумерной.

В случае, когда начало каждого из векторов (r(t)) совпадает с началом координат (рис. 21.1), эти векторы называют радиус-векторами, а множество их концов — годографом вектор-функции (r(t)), (tin E), который можно рассматривать как траекторию точки (M(t)) конца вектора (r(t)), если считать, что (t) — время.

Предел вектор-функции.

Вектор (a) называют пределом вектор-функции (r(t)) в точке (t_0) и пишут (displaystyle lim_<trightarrow t_>r(t)=a) или (r(t)rightarrow a) при (trightarrow t_0), если
$$
lim_<trightarrow t_> |r(t)-a|=0,label
$$
то есть длина вектора (r(t)-a) стремится к нулю при (trightarrow t_0).

Вектор функции дифференциальные уравненияРис. 20.1

Если заданы (r(t)=(x(t),y(t),z(t))) и (a=(a_,a_,a_)), то
$$
lim_<trightarrow t_>r(t)=alabel
$$
тогда и только тогда, когда
$$
x(t)rightarrow a_1, y(t)rightarrow a_2, z(t)rightarrow a_3quad при trightarrow t_0.label
$$

Поэтому, если (r(t)rightarrow a) при (trightarrow t_0), то есть выполняется условие eqref, то выполняется условие eqref.

Обратно: если выполняются условия eqref, то из равенства eqref следует, что выполнено условие eqref. (bullet)

При доказательстве свойств предела вектор-функции удобно использовать следующее очевидное утверждение: условие eqref выполняется в том и только том случае, когда
$$
r(t)=a+alpha(t),nonumber
$$
где (alpha(t)) — бесконечно малая вектор-функция, то есть
$$
alpha(t)rightarrow 0quad mbox trightarrow t_.nonumber
$$

Свойства пределов вектор-функций.

(circ) Это свойство следует из неравенства
$$
||r(t)|-|a|| leq |r(t)-a|.qquad bulletnonumber
$$

Если (r(t)rightarrow a) при (trightarrow t_), а скалярная функция (f(t)) такова, что (f(t)rightarrow A) при (trightarrow t_), то (f(t)r(t)rightarrow Aa) при (trightarrow t_), то есть
$$
lim_f(t)r(t)=lim_<trightarrow t_>f(t)lim_r(t).label
$$

(circ) Из определений пределов скалярной функции и вектор-функции следует, что (r(t)=a+alpha(t), f(t)=A+beta(t)), где (alpha(t)) — бесконечно малая вектор-функция, (beta(t)) — бесконечно малая функция при (trightarrow t_0). Поэтому (f(t)r(t)=Aa+gamma(t)), где (gamma(t)=Aalpha(t)+beta(t)a+beta(t)alpha(t)) — бесконечно малая вектор-функция при (trightarrow t_0), откуда получаем равенство eqref. (bullet)

(circ) По условию (r_(t)=a_+alpha_), где (a_i(t)rightarrow 0) при (trightarrow t_ (i=1,2)). Поэтому (r_1(t)+r_2(t)=a_1+a_2+beta(t)), где (beta(t)=alpha_(t)+alpha_2(t)rightarrow 0) при (trightarrow t_), откуда следует eqref. Докажем формулу eqref. В силу свойств скалярного произведения
$$
(r_(t),r_2(t))-(a_1,a_2)=(alpha_(t),a_)+(alpha_(t),a_1)+(alpha_1(t),alpha_2(t)),nonumber
$$
причем в правой части этого равенства — бесконечно малая функция, так как (alpha_(t),alpha_(t)) — бесконечно малые вектор-функции и (|(p,q)| leq |p|cdot|q|) для любых векторов (p) и (q).

Аналогично доказывается формула eqref, в этом случае следует воспользоваться неравенством (|[p,q]| leq |p|cdot|q|). (bullet)

Непрерывность вектор-функции.

Вектор-функцию (r(t)) называют непрерывной при (t=t_), если
$$
lim_<trightarrow t_>r(t)=r(t_0).label
$$
Непрерывность вектор-функции (r(t)=(x(t),y(t),z(t))) при (t=t_) в силу эквивалентности условий eqref и eqref означает, что ее координаты (x(t),y(t),z(t)) непрерывны в точке (t_).

Назовем вектор-функцию (Delta r=r((t_0+Delta t)-r(t_0)) приращением вектор-функции (r(t)) в точке (t_). Тогда условие eqref означает, что
$$
Delta rrightarrow 0quad приquad Delta trightarrow 0.label
$$

Из определения непрерывности вектор-функции и свойств пределов векторных функций следует, что сумма, векторное и скалярное произведения вектор-функций (r_1(t)) и (r_2(t)) являются непрерывными функциями при (t=t_), если вектор-функции (r_1(t)) и (r_2(t)) непрерывны в точке (t_).

Видео:Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Производная и дифференциал вектор-функции.

Производная вектор-функции.

Если существует (displaystyle lim_frac) где (Delta r=r(t_0+Delta t)-r(t_0)), то этот предел называют производной вектор-функции (r(t)) в точке (t_0) и обозначают (r'(t_0)) или (dot(t_0)).

Таким образом,
$$
r'(t_)=lim_frac<r(t_+Delta t)-r(t_)>.label
$$
Аналогично вводится понятие второй производной
$$
r″(t_)=lim_frac<r'(t_+Delta t)-r'(t_)>nonumber
$$
и производной порядка (n > 2) вектор-функции. Заметим, что если (r(t)=(x(t),y(t),z(t))), то
$$
r'(t_)=(x'(t_0),y'(t_0),z'(t_0))label
$$
Утверждение eqref следует из определения eqref и свойств пределов вектор-функций.

Аналогично, если существует (r″(t_)), то
$$
r″(t_)=(x″(t_0),y″(t_0),z″(t_0)).nonumber
$$
Из определения производной следует, что (Delta r=r'(t_0)Delta t+alpha(Delta t)Delta t), где (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0), и потому (Delta rrightarrow 0) при (Delta trightarrow 0). Таким образом, выполняется условие eqref, то есть вектор-функция (r(t)), имеющая производную в точке (t_), непрерывна при (t=t_).

(circ) Формулы eqref-eqref справедливы в точке (t), если в этой точке соответствующие функции имеют производные. Ограничимся доказательством формулы eqref. Пусть (Delta r_) — приращение вектор-функции (r_k(t)), соответствующее приращению аргумента (Delta t), то есть (Delta r_k=r_k(t+Delta t)-r_k(t), k=1,2). Тогда, используя свойства скалярного произведения и свойства пределов вектор-функций, получаем
$$
begin
(r_,r_)’=displaystylelim_frac<(r_(t+Delta t),r_(t+Delta t))-(r_(t),r_(t))>=\
=lim_left[left(r_(t),frac<Delta r_(t)>right)+left(frac<Delta r_(t)>,r_2(t)right)+left(frac<Delta r_(t)>,Delta r_2(t)right)right]=\
=(r_1,r_2′)+(r_1′,r_2),
endnonumber
$$
так как (displaystyle frac<triangle mathrm_>rightarrow r_‘(t)) при (Delta trightarrow 0 (i=1,2)) и (Delta r_2rightarrow 0) при (Delta trightarrow 0). (bullet)

Пусть существует (r'(t)) для всех (tin(alpha,beta)) и пусть (|r(t)|=C=const) для всех (tin(alpha,beta)).

Доказать, что ((r(t),r'(t))=0), то есть векторы (r(t)) и (r'(t)) ортогональны.

(triangle) Используя формулу (|r(t)|^2=(r(t),r(t))), правило дифференцирования скалярного произведения (формула eqref) и условие (|r(t)|=C), получаем ((r(t),r(t))’=2(r'(t),r(t))=0), так как (|r(t)|^)’=(C^)’=0). Итак,
$$
|r(t)|=CRightarrow (r(t),r'(t))=0.quadblacktrianglenonumber
$$

Дифференциал вектор-функции.

Вектор-функцию (r(t)), определенную в некоторой окрестности точки (t_), называют дифференцируемой при (t=t_), если ее приращение (Delta r=r(t_+Delta t)-r(t_)) в точке (t_) представляется в виде
$$
Delta r=aDelta t+Delta talpha(Delta t),label
$$
где вектор (a) не зависит от (Delta t), (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0).

Полагая (dt=Delta t), запишем равенство eqref в виде
$$
dr=r’dt,nonumber
$$
где опущено обозначение аргумента функции (r’). Отсюда получаем
$$
r’=frac

.label (21)
$$

Замена переменного.

Если функция (t=t(s)) дифференцируема при (s=s_, t(s_)=t_), а вектор-функция (r(t)) дифференцируема в точке (t_), то вектор-функция (rho(s)=r(t(s))) дифференцируема в точке (s_), а производная этой функции выражается формулой
$$
rho’ (s_0)=r_s'(t(s_0))=r_'(t_)t_‘(s_),label
$$

где индекс указывает, по какому переменному производится дифференцирование.

(circ) Функция (alpha(Delta(t))) в формуле eqref не определена при (Delta t=0). Доопределим ее при (Delta t=0), полагая (alpha(0)=0).

Так как (t=t(s)) — функция, дифференцируемая при (s=s_0), то (Delta t=t(s_+Delta s)-t(s_)rightarrow 0) при (Delta srightarrow 0). Разделив обе части равенства eqref на (Delta sneq 0), получим
$$
frac=r'(t_0)frac+alpha(Delta t)frac.label
$$
Правая часть eqref имеет при (Delta srightarrow 0) предел, равный (r'(t_0)t'(s_0)), так как (Delta trightarrow 0) при (Delta srightarrow 0) и (alpha(Delta t)rightarrow 0) при (Delta trightarrow 0). Следовательно, существует предел в левом части eqref, и справедливо равенство eqref. Формулу eqref запишем кратко в виде равенства
$$
r_’=r_’t_’,label
$$
выражающего правило дифференцирования вектор-функции при замене переменного. (bullet)

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Теорема Лагранжа и локальная формула Тейлора для вектор-функции.

Формула Лагранжа, то есть формула
$$
r(beta)-r(alpha)=r'(xi)(beta-alpha),quad xiin(alpha,beta),label
$$
для вектор-функции, вообще говоря, неверна.

(circ) В самом деле, пусть формула eqref верна, и пусть (r(t)=(cos t,sin t)), тогда (r'(t)=(-sin t,cos t), |r'(t)|=1). Полагая (alpha=0,beta=2pi), получим из равенства eqref (0=r(2pi)-r(0)=r'(xi)2pi), что невозможно, так как (|r'(xi)|=1). (bullet)

Если вектор-функция (r(t)) непрерывна на отрезке ([alpha,beta]) и дифференцируема на интервале ((alpha,beta)), то
$$
existsxiin(alpha,beta): |r(beta)-r(alpha)|leq|r'(xi)|(beta-alpha).label
$$

(circ) Рассмотрим скалярную функцию
$$
varphi(t)=(r(beta)-r(alpha),r(t)).nonumber
$$
эта функция непрерывна на отрезке ([alpha,beta]), так как вектор-функция (r(t)) непрерывна на этом отрезке. Кроме этого, функция (varphi(t)) дифференцируема на интервале ((alpha,beta)), так как функция (r(t)) дифференцируема этом интервале, причем в силу правила дифференцирования скалярного произведения
$$
varphi'(t)=(r(beta)-r(alpha),r'(t)).nonumber
$$
По теореме Лагранжа
$$
existsxiin(alpha,beta): varphi(beta)-varphi(alpha)=varphi'(xi)(beta-alpha)label
$$
Преобразуем левую часть неравенства eqref:
$$
begin
varphi(beta)-varphi(alpha)=(r(beta)-r(alpha),r(beta))-(r(beta)-r(alpha),r(alpha))=\
=(r(beta)-r(alpha),r(beta)-r(alpha))=|r(beta)-r(alpha)|^2
endnonumber
$$
Тогда равенство eqref примет вид
$$
|r(beta)-r(alpha)|^=(r(beta)-r(alpha),r'(xi))(beta-alpha).label
$$
Если (r(beta)=r(alpha)), то неравенство eqref справедливо при любом (xiin in(alpha,beta)). Если (r(beta)neq r(alpha)), то (|r(beta)-r(alpha)| > 0). Тогда, используя неравенство (|(a,b)|leq|a|cdot|b|), из формулы eqref получим
$$
|r(beta)-r(alpha)|^leq|r(beta)-r(alpha)|cdot |r'(xi)|(beta-alpha),nonumber
$$
откуда, разделив обе части неравенства на (|r(beta)-r(alpha)| > 0), получим неравенство eqref. (bullet)

Для вектор-функции (r(t)) справедлива локальная формула Тейлора
$$
r(t)=sum_^frac<r^(t_)>(t-t_)^+varepsilon(t-t_),label
$$
где (varepsilon(t-t_0)=o((t-t_)^)) — вектор-функция такая, что (varepsilon(t-t_0)=(t-t_)^varepsilon_(t-t_)), где (varepsilon_(t-t_)rightarrow 0) при (trightarrow t_).Эта формула справедлива в предположении, что существует (r^(t_0)). Для доказательства формулы eqref достаточно воспользоваться локальной формулой Тейлора для компонент вектор-функции (r(t)).

Видео:Дифференциал функцииСкачать

Дифференциал функции

Основные понятия и определения дифференциальных уравнений

Дифференциальным уравнением называется уравнение, связывающее независимую переменную , искомую функцию и её производные , т. е. уравнение вида

Если искомая функция есть функция одной независимой переменной , дифференциальное уравнение называется обыкновенным ; например,

Когда искомая функция есть функция двух и более независимых переменных, например, если , то уравнение вида

называется уравнением в частных производных. Здесь — неотрицательные целые числа, такие, что ; например

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по на . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь

Подставляя выражения и в дифференциальное уравнение, получим тождество

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

Общий вид уравнения первого порядка

Если уравнение (1) удается разрешить относительно , то получится уравнение первого порядка, разрешенное относительно производной.

Задачей Коши называют задачу нахождения решения уравнения , удовлетворяющего начальному условию (другая запись ).

Геометрически это означает, что ищется интегральная кривая, проходящая через заданную точку плоскости (рис. 1).

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение , где функция определена в некоторой области плоскости , содержащей точку . Если функция удовлетворяет условиям

а) есть непрерывная функция двух переменных и в области ;

б) имеет частную производную , ограниченную в области , то найдется интервал , на котором существует единственное решение данного уравнения, удовлетворяющее условию .

Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения , удовлетворяющее условию , хотя в точке не выполняются условия а) или б) или оба вместе.

1. . Здесь . В точках оси условия а) и б) не выполняются (функция и её частная производная разрывны на оси и неограниченны при ), но через каждую точку оси проходит единственная интегральная кривая (рис. 2).

2. . Правая часть уравнения и ее частная производная непрерывны по и во всех точках плоскости . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость .

3. . Правая часть уравнения определена и непрерывна во всех точках плоскости . Частная производная обращается в бесконечность при , т.е. на оси , так что при нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение . Таким образом, через каждую точку оси проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).

Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол и отрезков оси , например, и др., так что через каждую точку оси проходит бесконечное множество интегральных линий.

Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Условие Липшица

Замечание. Условие ограниченности производной , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .

Говорят, что функция , определенная в некоторой области , удовлетворяет в условию Липшица по , если существует такая постоянная ( постоянная Липшица ), что для любых из и любого из справедливо неравенство

Существование в области ограниченной производной достаточно для того, чтобы функция удовлетворяла в условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности ; последняя может даже не существовать. Например, для уравнения функция не дифференцируема по в точке , но условие Липшица в окрестности этой точки выполняется. В самом деле,

поскольку а . Таким образом, условие Липшица выполняется с постоянной .

Теорема. Если функция непрерывна и удовлетворяет условию Липшица по в области , то задача Коши

имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение

Нетрудно видеть, что функция непрерывна; с другой стороны,

и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат , так как множитель при оказывается неограниченным при .

Данное дифференциальное уравнение допускает решение где — произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию

Общим решением дифференциального уравнения (2) называется функция

зависящая от одной произвольной постоянной , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной ;

2) каково бы ни было начальное условие

можно подобрать такое значение постоянной , что решение будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной .

Пример 1. Проверить, что функция есть общее решение дифференциального уравнения и найти частное решение, удовлетворяющее начальному условию . Дать геометрическое истолкование результата.

Решение. Функция удовлетворяет данному уравнению при любых значениях произвольной постоянной . В самом деле,

Зададим произвольное начальное условие . Полагая и в равенстве , найдем, что . Подставив это значение в данную функцию, будем иметь . Эта функция удовлетворяет заданному начальному условию: положив , получим . Итак, функция является общим решением данного уравнения.

В частности, полагая и , получим частное решение .

Общее решение данного уравнения, т.е. функция , определяет в плоскости семейство параллельных прямых с угловым коэффициентом . Через каждую точку плоскости проходит единственная интегральная линия . Частное решение определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция есть общее решение уравнения и найти частное решение, удовлетворяющее начальному условию .

Решение. Имеем . Подставляя в данное уравнение выражения и , получаем , т. е. функция удовлетворяет данному уравнению при любых значениях постоянной .

Зададим произвольное начальное условие . Подставив и вместо и в функцию , будем иметь , откуда . Функция удовлетворяет начальному условию. Действительно, полагая , получим . Функция есть общее решение данного уравнения.

При и получим частное решение .

С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку (рис.5).

Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.

Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.

Так как с геометрической точки зрения координаты и равноправны, то наряду с уравнением мы будем рассматривать уравнение .

Видео:Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

Вектор функции дифференциальные уравнения

Lv 1 = f, Lv 2 = f,

Вектор функции дифференциальные уравнения

То есть сумма решений линейного однородного и линейного неоднородного уравнений (с тем же L) есть решение того же неоднородного уравнения; разность двух решений линейного неоднородного уравнения есть решение линейного однородного уравнения.

2.3. Линейная зависимость вектор-функций.

Вектор-функции x 1 (t), . x k (t) называются линейно зависимыми на интервале (или на множестве) М , если найдутся такие постоянные числа c1. ck, из которых хотя бы одно не равно нулю, что при всех t Î M имеем

Вектор функции дифференциальные уравнения

Вектор-функции линейно независимы на M , если они не являются линейно зависимыми на M, то есть если равенство (12) (при всех t Î M одновременно) возможно лишь в случае c1 = . = сk = 0.

Понятие линейной зависимости вектор-функций на данном множестве M, содержащем более одной точки, отличается от известного из алгебры понятия линейной зависимости векторов.

Если вектор-функции x 1 (t), . x k (t) линейно зависимы на M, то при каждом t Î M их значения являются линейно зависимыми векторами, это следует из (12). Обратное неверно.

x 1 (t) = (1,1) и x 2 (t) = (t, t)

при любом t являются линейно зависимыми векторами.

Но как вектор-функции, они на любом интервале ( α, β) линейно независимы, так как при постоянных с1 и c2 равенство

на всем интервале ( α, β) возможно лишь при с1 = с2 = 0.

Действительно, c1x 1 (t) + c2 x 2 (t) = 0 эквивалентно выполнению равенства

Вектор функции дифференциальные уравнения

2.3. Детерминант Вронского.

Детерминант Вронского W (t) или вронскиан для n-мерных вектор-функций

х 1 (t). , x n ( t ) — это детерминант n-го порядка, столбцы которого состоят из координат этих вектор-функций.

Вектор функции дифференциальные уравнения

Если вектор-функции x 1 (t), . x n (t) линейно зависимы, то их вронскиан W(t) ≡ 0.

Если вронскиан W(t) ≠ 0 ( $ t ), то вектор-функции x 1 (t), . x n (t) линейно независимы.

Если вектор-функции x 1 (t), . x n (t) являются решениями системы х’ = A(t)x с непрерывной матрицей A ( t ), и их вронскиан равен нулю хотя бы при одном значении t , то эти вектор-функции линейно зависимы и их вронскиан W(t) ≡ 0.

Для вектор-функций, не являющихся решениями, утверждение леммы 3 неверно. В частности, для вектор-функций примера 2

x 1 (t) = (1,1) и x 2 (t) = (t, t)

имеем: W(t) ≡ 0, а они линейно независимы.

Далее рассматриваются решения линейной системы

Фундаментальной системой решений называется любая система n линейно независимых решений.

Покажем, что фундаментальные системы существуют. Возьмем t0 Î ( α, β) и любые n линейно независимых векторов b 1 , …, b n Î R n

Пусть х 1 (t). ,x n (t) — решения системы х’ = A(t)x с начальными условиями x j (t 0 ) = b j , j = 1. ,n.

Эти решения линейно независимы, так как при t = t0 их значения — линейно независимые векторы b 1 . b n , и равенство (12) возможно только при c1 = . = cn = 0.

Общим решением системы дифференциальных уравнений называют множество функций, содержащее все решения этой системы и только их (или формулу, представляющую это множество при всевозможных значениях произвольных постоянных).

Теорема 5 (об общем решении).

Пусть x l (t). x n (t) — какие-нибудь n линейно независимых решений системы

Общее решение системы есть

Вектор функции дифференциальные уравнения

Теорема 5 означает, что множество решений системы х’ = A(t)x (х Î R n ) есть n-мерное линейное пространство.

Базисом в этом пространстве служит любая фундаментальная система решений. Равенство (13) есть представление любого элемента этого пространства в виде линейной комбинации элементов базиса.

Фундаментальной матрицей системы х’ = A(t)x называется матрица X(t), столбцы которой составляют фундаментальную систему решений.

Из леммы 3 следует, что det X(t) = W(t) ≠ 0.

С помощью фундаментальной матрицы X(t) общее решение (13) записывается в виде

где с — вектор-столбец с произвольными координатами c1. сn (так как X(t)c — линейная комбинация столбцов матрицы X(t), равная правой части (13) с коэффициентами с1. сn.

Найти линейно независимые решения и фундаментальную матрицу для системы

Из второго уравнения имеем у = с1 (произвольная постоянная). Подставляя в первое уравнение, получаем х’ = с1. Отсюда х = c1t + c2.

Общее решение есть х = c1t + c2,

Полагая с1 = 1, с2 = 0, находим частное решение х1 = t,

y1 = 1, а полагая с1 = 0, с2 = 1, находим другое решение х2 = 1,

y2 = 0. Их вронскиан W(t) = -1 ≠ 0. И в силу следствия леммы 2 эти решения линейно независимы. Поэтому фундаментальной является матрица

X T = x 1 x 2 y 1 y 2 Вектор функции дифференциальные уравнения.

Теорема 6 (переход от одной фундаментальной матрицы к другой).

Пусть X(t) — фундаментальная матрица, С — неособая (det С ≠ 0) постоянная матрица n x n. Тогда Y(t) = X(t)C — фундаментальная матрица той же системы. По этой формуле из данной фундаментальной матрицы X(t) можно получить любую фундаментальную матрицу Y(t), подбирая матрицу С.

Теорема 7 . Общее решение линейной неоднородной системы (10)

есть сумма ее частного решения и общего решения линейной однородной системы

Вектор функции дифференциальные уравнения

3. ПРИМЕНЕНИЕ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ЭКОНОМИКИ.

Дифференциальные уравнения занимают особое место в ма­тематике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построе­нию математических моделей, основой которых являются диф­ференциальные уравнения.

В дифференциальных уравнениях неизвестная функция со­держится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функ­ций, представляющих собой решения этих уравнений.

На этой лекции мы рассмотрим пример примене­ния теории дифференциальных уравнений в непрерывной мо­дели экономики, где независимой переменной является вре­мя t . Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономичес­кой динамики.

3.1. Модель рынка с прогнозируемыми ценами.

Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тен­денции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функци­ями эти характеристики описываются соответственно первой и второй производными функции цены P ( t ).

Рассмотрим конкретный пример. Пусть функции спроса D и предложения S имеют следующие зависимости от цены Р и ее производных:

D(t) = 3P′′ – P′ – 2P +18,

S(t) = 4P′′ + P′ + 3P + 3. (14)

Принятые в (14) зависимости вполне реалистичны: поясним это на слагаемых с производными функции цены.

1. Спрос «подогревается» темпом изменения цены: если темп растет ( Р» > 0), то рынок увеличивает интерес к то­вару, и наоборот. Быстрый рост цены отпугивает покупателя, поэтому слагаемое с первой производной функции цены входит со знаком минус.

2. Предложение в еще большей мере усиливается темпом изменения цены, поэтому коэффициент при Р» в функции S ( t ) больше, чем в D ( t ) . Рост цены также увеличивает предложе­ние, потому слагаемое, содержащее Р’ , входит в выражение для S ( t ) со знаком плюс.

Требуется установить зависимость цены от времени. По­скольку равновесное состояние рынка характеризуется равен­ством D = S , приравняем правые части уравнений (14). После приведения подобных получаем

Вектор функции дифференциальные уравнения

Соотношение (15) представляет линейное неоднородное дифференциальное уравнение второго порядка относительно функции P ( t ) . Как было установлено в предыдущем пункте, общее решение такого уравнения состоит из суммы какого-либо его частно­го решения и общего решения соответствующего однородного уравнения

Характеристическое уравнение имеет вид

Его корни — комплексно-сопряженные числа: k 1,2 = -1 ± 2 i, и, следовательно, общее решение уравнения (16) дается фор­мулой

где С1 и С2 — произвольные постоянные.

Вектор функции дифференциальные уравнения

В качестве частно­го решения неоднородного уравнения (15) возьмем решение Р = P st — постоянную величину как установившуюся цену. Подстановка в уравнение (15) дает значение P st :

Таким образом, общее решение уравнения (15) имеет вид

Вектор функции дифференциальные уравнения

Нетрудно видеть, что P ( t ) Вектор функции дифференциальные уравнения P st = 3 при t Вектор функции дифференциальные уравнения Вектор функции дифференциальные уравнения , т.е. все интегральные кривые имеют горизонтальную асимптоту Р = 3 и колеблются около нее. Это означает, что все цены стремятся к установившейся цене P st с колебаниями около нее, причем амплитуда этих колебаний затухает со временем.

3.2. Частные решения: задача Коши и смешанная задача.

Приведем частные решения этой задачи в двух вариантах: задача Коши и смешанная задача.

1. Задача Коши. Пусть в начальный момент времени из­вестна цена, а также тенденция ее изменения: При t =0

Подставляя первое условие в формулу общего решения (17), получаем

P(t) = 3 + e –t (cos 2t + C2 sin 2t). (18)

Дифференцируя , имеем отсюда

Теперь реализуем второе условие задачи Коши:

Р’ (0) = 2 C2 — 1 = 1, откуда C 2 = 1 . Окончательно получаем, что решение задачи Коши имеет вид

P(t) = 3 + e –t (cos 2t + sin 2t).

Вектор функции дифференциальные уравнения

или в более удобной форме:

P t = 3+ 2 e — t cos 2 t — π 4 . Вектор функции дифференциальные уравнения

2. Смешанная задача. Пусть в начальный момент времени известны цена и спрос:

Поскольку первое начальное условие такое же, как и в преды­дущем случае, то имеем и здесь решение (18). Тогда произ­водные функции Р( t ) выражаются формулами

Отсюда Р’(0) =2 C 2 — 1 и Р»( 0 ) = —4 C 2 — 3 . Подставляя эти равенства во второе условие задачи, т.е. D ( 0 ) = 16 , имеем с учетом вида D ( t ) из первой формулы (14): С2 = -1. Итак, решение данной задачи имеет вид

Вектор функции дифференциальные уравнения

или в более удобной форме:

P t = 3- 2 e — t sin 2 t — π 4 Вектор функции дифференциальные уравнения.

Интегральные кривые, соответствующие задачам 1 и 2, изоб­ражены на рисунке 1.

Вектор функции дифференциальные уравнения

Вектор функции дифференциальные уравнения

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

[1] Клюшин В. Л. Высшая математика для экономистов: Учебное пособие. — М.: ИНФРА-М, 2009. — 448 с. — (Учебники РУДН).

[2] Колемаев В. А. Экономико-математическое моделирование. Моделирование макроэкономических процессов и систем: Учебник. М.: ЮНИТИ-ДАНА, 2005. — 295 с.

Вектор функции дифференциальные уравнения

[3] Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. — 2-е изд., испр. — М.: Дело, 2001. — 688 с.

[4] Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2005. – 464, ил. (Серия «Учебное пособие»).

[5] Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. — 240 с.

🎥 Видео

Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.

решить систему дифференциальных уравненийСкачать

решить систему дифференциальных уравнений

Геометрический смысл дифференциального уравненияСкачать

Геометрический смысл дифференциального уравнения

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными

Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Оператор набла (оператор Гамильтона) и оператор Лапласа

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2

Математика это не ИсламСкачать

Математика это не Ислам

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1
Поделиться или сохранить к себе: