Вектор чисел в маткаде

Вектор чисел в маткаде

Mathcad содержит функции для обычных в линейной алгебре действий с массивами. Эти функции предназначены для использования с векторами и матрицами. Если явно не указано, что функция определена для векторного или матричного аргумента, не следует в ней использовать массивы как аргумент. Обратите внимание, что операторы, которые ожидают в качестве аргумента вектор, всегда ожидают вектор-столбец, а не вектор-строку. Чтобы заменить вектор-строку на вектор-столбец, используйте оператор транспонирования [Ctrl]1.

Если Вы используете Mathcad PLUS, Вы будете также иметь несколько дополнительных функций, определенных для векторов. Эти функции скорее предназначены для анализа данных, чем для действий с матрицами. Они обсуждены в Главе “Встроенные функции”.

Следующие таблицы перечисляют векторные и матричные функции Mathcad. В этих таблицах

  • A и B — массивы (векторы или матрицы).
  • v — вектор.
  • M и N — квадратные матрицы.
  • z — скалярное выражение.
  • Имена, начинающиеся с букв m, n, i или j — целые числа.

Размеры и диапазон значений массива

В Mathcad есть несколько функций, которые возвращают информацию относительно размеров массива и диапазона его элементов. Рисунок 10 показывает, как эти функции используются.

Имя функцииВозвращается.
rows(A)Число строк в массиве A. Если А — скаляр, возвращается 0.
cols(A)Число столбцов в массиве A. Если A скаляр, возвращается 0.
length(v)Число элементов в векторе v.
last(v)Индекс последнего элемента в векторе v.
max(A)Самый большой элемент в массиве A. Если A имеет комплексные элементы, возвращает наибольшую вещественную часть плюс i, умноженную на наибольшую мнимую часть.
min(A)Самый маленький элемент в массиве A. Если A имеет комплексные элементы, возвращает наименьшую вещественную часть плюс i, умноженную на наименьшую мнимую часть.

Вектор чисел в маткаде

Рисунок 10: Векторные и матричные функции для нахождения размера массива и получения информации относительно диапазона элементов.

Специальные типы матриц

Можно использовать следующие функции, чтобы произвести от массива или скаляра матрицу специального типа или формы. Функции rref, diag и geninv доступны только в Mathcad PLUS.

Имя функцииВозвращается.
identity(n)n x n единичная матрица (матрица, все диагональные элементы которой равны 1, а все остальные элементы равны 0).
Re(A)Массив, состоящий из элементов, которые являются вещественными частями элементов A.
Im(A)Массив, состоящий из элементов, которые являются мнимыми частями элементов A.
Е diag(v)Диагональная матрица, содержащая на диагонали элементы v.
Е geninv(A)Левая обратная к A матрица L такая, что LВектор чисел в маткадеA = I, где I — единичная матрица, имеющая то же самое число столбцов, что и A. Матрица А — m x n вещественная матрица, где m>=n.
Е rref(A)Ступенчатая форма матрицы A.

Вектор чисел в маткаде

Рисунок 11: Функции для преобразования массивов. Обратите внимание, что функции diag и rref являются доступными только в Mathcad PLUS.

Специальные характеристики матрицы

Можно использовать функции из следующей таблицы, чтобы найти след, ранг, нормы и числа обусловленности матрицы. Кроме tr, все эти функции доступны только в Mathcad PLUS.

Имя функцииВозвращается.
tr(M)Сумма диагональных элементов, называемая следом M.
Е rank(A)Ранг вещественной матрицы A.
Е norm1(M)L1 норма матрицы M.
Е norm2(M)L2 норма матрицы M.
Е norme(M)Евклидова норма матрицы M.
Е normi(M)Равномерная норма матрицы M.
Е cond1(M)Число обусловленности матрицы M, основанное на L1 норме.
Е cond2(M)Число обусловленности матрицы M, основанное на L2 норме.
Е conde(M)Число обусловленности матрицы M, основанное на евклидовой норме.
Е condi (M)Число обусловленности матрицы M, основанное на равномерной норме.

Формирование новых матриц из существующих

В Mathcad есть две функции для объединения матриц вместе — бок о бок, или одна над другой. В Mathcad также есть функция для извлечения подматрицы. Рисунки 12 и 13 показывают некоторые примеры.

Имя функцииВозвращается.
augment (A, B)Массив, сформированный расположением A и B бок о бок. Массивы A и B должны иметь одинаковое число строк.
stack (A, B)Массив, сформированный расположением A над B. Массивы A и B должны иметь одинаковое число столбцов.
submatrix (A, ir, jr, ic, jc)Субматрица, состоящая из всех элементов, содержащихся в строках с ir по jc и столбцах с ic по jc. Чтобы поддерживать порядок строк и-или столбцов, удостоверьтесь, что ir

Вектор чисел в маткаде

Рисунок 12: Объединение матриц функциями stack и augment.

Вектор чисел в маткаде

Рисунок 13: Извлечение субматрицы из матрицы при помощи функции submatrix.

Собственные значения и собственные векторы

В Mathcad существуют функции eigenval и eigenvec для нахождения собственных значений и собственных векторов матрицы. В Mathcad PLUS также есть функция eigenvecs для получения всех собственных векторов сразу. Если Вы используете Mathcad PLUS, Вы будете также иметь доступ к genvals и genvecs для нахождения обобщенных собственных значений и собственных векторов. Рисунок 14 показывает, как некоторые из этих функций используются.

Возвращается.

Имя функции
eigenvals (M)Вектор, содержащий собственные значения матрицы M.
eigenvec (M, z)Матрица, содержащая нормированный собственный вектор, соответствующий собственному значению z квадратной матрицы M.
Е eigenvecs (M)Матрица, содержащая нормированные собственные векторы, соответствующие собственным значениям квадратной матрицы M. n-ный столбец возвращенной матрицы — собственный вектор, соответствующий n-ному собственному значению, возвращенному eigenvals.
Е genvals (M,N)Вектор v собственных значений, каждое из которых удовлетворяет обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. Вектор x — соответствующий собственный вектор.
Е genvecs (M,N)Матрица, содержащая нормализованные собственные векторы, соответствующие собственным значениям в v, векторе, возвращенном genvals. n-ный столбец этой матрицы — собственный вектор x, удовлетворяющий обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера.

Вектор чисел в маткаде

Рисунок 14: Нахождение собственных значений и собственных векторов.

Вектор чисел в маткаде

Рисунок 15: Использование eigenvecs для одновременного нахождения всех собственных векторов.

Если Вы используете Mathcad PLUS, Вы будете иметь доступ к некоторым дополнительным функциям для выполнения специальных разложений матрицы: QR, LU, Холесского, и по сингулярным базисам. Некоторые из этих функций возвращают две или три матрицы, соединенные вместе в одну большую матрицу. Используйте submatrix, чтобы извлечь эти две или три меньшие матрицы. Рисунок 16 показывает пример.

Имя функцииВозвращается.
Е cholesky(M)Нижняя треугольная матрица L такая, что LВектор чисел в маткадеL T =M. Матрица M должна быть симметричной положительно определенной. Симметрия означает, что M=M T , положительная определённость — что x T Вектор чисел в маткадеMВектор чисел в маткадеx>0 для любого вектора x Вектор чисел в маткаде0.
Е qr(A)Матрица, чьи первые n столбцов содержат ортогональную матрицу Q, а последующие столбцы содержат верхнюю треугольную матрицу R. Матрицы Q и R удовлетворяют равенству A=QВектор чисел в маткадеR. Матрица A должна быть вещественной.
Е lu(M)Матрица, которая содержит три квадратные матрицы P, L и U, расположенные последовательно в указанном порядке и имеющие с M одинаковый размер. L и U являются соответственно нижней и верхней треугольными матрицами. Эти три матрицы удовлетворяют равенству PВектор чисел в маткадеM=LВектор чисел в маткадеU .
Е svd(A)Матрица, содержащая две расположенные друг над другом матрицы U и V. Сверху находится U — размера m x n, снизу V — размера n x n. Матрицы U и V удовлетворяют равенству A=UВектор чисел в маткадеdiag(s)Вектор чисел в маткадеV T , где s — вектор, возвращенный svds(A). A должна быть вещественнозначной матрицей размера m x n, где m>=n.
Е svds(A)Вектор, содержащий сингулярные значения вещественнозначной матрицы размера m x n, где m>=n.

Вектор чисел в маткаде

Рисунок 16: Использование функции submatrix для извлечения результата из функции rq. Используйте submatrix, чтобы извлечь подобным образом результаты из функций lu и svd. Обратите внимание, что эти функции доступны только в Mathcad PLUS.

Решение линейной системы уравнений

Если Вы используете Mathcad PLUS, Вы сможете использовать функцию lsolve для решения линейной системы уравнений. Рисунок 17 показывает пример. Обратите внимание, что M не может быть ни вырожденной, ни почти вырожденной для использования с lsolve. Матрица называется вырожденной, если её детерминант равен нулю. Матрица почти вырождена, если у неё большое число обусловленности. Можно использовать одну из функций, описанных на странице 204, чтобы найти число обусловленности матрицы.

Возвращается.

Имя функции
Е lsolve (M, v)Вектор решения x такой, что MВектор чисел в маткадеx=v.

Если Вы не используете Mathcad PLUS, Вы всё-таки можете решать систему линейных уравнений, используя обращение матрицы, как показано в нижнем правом углу Рисунка 9.

Вектор чисел в маткаде

Рисунок 17: Использование lsolve для решения системы из двух уравнений с двумя неизвестными.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Векторы и матрицы в MathCAD

Нижняя граница индексации в MathCAD определена системной переменной ORIGIN. По умолчанию ORIGIN=0. Значение переменной можно переопределить. Например, ORIGIN=1.

Векторы и матрицы в MathCAD можно задавать путем ввода их элементов. Для ввода индекса элемента массива используется символ – [.

Поэлементный ввод массива Х

Вводимые символыОтображаемые символы
X [ 1 Shift+: 5X1:=5
X [ 2 Shift+: 8X2:= 8
X [ 3 Shift+: 10X3:= 10

Поэлементный ввод матрицы А

Вводимые символыОтображаемые символы
A [ 1,1 Shift+: 0.1A11 := 0.1
A [ 1,2 Shift+: -2.5A12 := -2.5
A [ 2,1 Shift+: -1.0A21 := -1.0
A [ 2,2 Shift+: 5.2A22 := 5.2

Вектор чисел в маткаде

Для операций с матрицами и векторами предназначена панель Matrix, которая открывается щелчком по кнопке Вектор чисел в маткадев панели математических инструментов.

Вектор чисел в маткаде

ПанельMatrix содержит следующие кнопки:

Вектор чисел в маткаде– определение размеров матрицы;

Вектор чисел в маткаде– ввод элемента массива Вектор чисел в маткаде;

Вектор чисел в маткаде– вычисление матрицы, обратной к данной Вектор чисел в маткаде;

Вектор чисел в маткаде– вычисление определителя матрицы Вектор чисел в маткаде;

Вектор чисел в маткаде– оператор векторизации (поэлементные операции с векторами и матрицами) Вектор чисел в маткаде;

Вектор чисел в маткаде– определение столбца матрицы Вектор чисел в маткаде;

Вектор чисел в маткаде– транспонирование матрицы Вектор чисел в маткаде;

Вектор чисел в маткаде– определение ранжированной переменной;

Вектор чисел в маткаде– вычисление скалярного произведения векторов;

Вектор чисел в маткаде– вычисление векторного произведения векторов;

Вектор чисел в маткаде– вычисление суммы компонент вектора.

Вектор чисел в маткаде– визуализация цифровой информации.

Действия, которые необходимо выполнить, чтобы ввести матрицу в рабочий документ при помощи кнопки Вектор чисел в маткадепанели Matrix:

1. Ввести с клавиатуры имя матрицы и знак присваивания;

2. Щелчком по кнопке Вектор чисел в маткадеоткрыть окно диалога:

Вектор чисел в маткаде

3. Определить число строк (Rows) и число столбцов (Columns) будущей матрицы;

4. Закрыть окно диалога, щелкнув по кнопке OK;

5. Ввести элементы матрицы, установив курсор в поле ввода, которое появится справа от знака присваивания:

Вектор чисел в маткаде

Вектор чисел в маткаде

Вектор чисел в маткаде

Вектор чисел в маткаде

Функции определения матриц и операции с блоками матриц:

matrix(m,n,f) – создает и заполняет матрицу A=<aij> размерности m на n, каждый элемент которой aij равен значению функции f(i,j);

diag(v) – создает диагональную матрицу, элементы главной диагонали которой хранятся в векторе v;

identity(n) – создает единичную матрицу порядка n;

augment(A,B) – из матриц А и В формируется третья матрица, первые столбцыкоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число строк);

stack(A,B) – из матриц А и В формируется третья матрица, первые строкикоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число столбцов);

submatrix(A,l,k,p,r) – формирует матрицу, которая является блоком матрицы А, расположенным в строках с l по k и в столбцах с p по r (l

Re(A) – возвращает матрицу (вектор) действительных частей матрицы (вектора) А с комплексными элементами;

Im(A) – возвращает матрицу (вектор) мнимых частей матрицы (вектора) А с комплексными элементами;

Функции вычисления различных числовых характеристик матриц:

last(v) – вычисление номера последнего элемента вектора v;

length(v) – вычисление количества элементов вектора v;

rows(A) – вычисление числа строк в матрице А;

cols(A) – вычисление числа столбцов в матрице А;

max(A) – вычисление наибольшего элемента в матрице (векторе) А;

min(A) – вычисление наименьшего элемента в матрице (векторе) А;

mean(A) – вычисление среднего значения матрицы (вектора) А;

tr(A) – вычисление следа (суммы диагональных элементов) квадратной матрицы А;

ranc(A) – вычисление ранга матрицы А;

Функции, реализующие численные алгоритмы:

rref(A) – приведение матрицы А к ступенчатому виду;

geninv(A) – вычисляет матрицу, левую обратную к матрице А, L∙A=E, где Е – единичная матрица размером n×n, L – прямоугольная матрица размером n×m, А – прямоугольная матрица размером m×n;

lsolve(A,b) – решение системы линейных алгебраических уравнений A∙x=b.

lu(A) – выполняет треугольное разложение матрицы А: A=С∙L∙U, где L и U – соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка;

qr(A) – выполняет разложение матрицы А: A=Q∙R, где Q – ортогональная матрица, а R – верхняя треугольная матрицы;

cholesky(A) – выполняет разложение матрицы А по схеме Холецкого: А=L∙L T , где А — квадратная, симметричная, положительно определенная матрица, L – треугольная матрица;

sort(v) – сортировка элементов вектора v в порядке возрастания их значений;

reverse(v) – перестановка элементов вектора v в обратном порядке;

csort(A,n) – перестановка строк матрицы А таким образом, чтобы отсортированным оказался n-й столбец;

rsort(A,n) – перестановка столбцов матрицы А таким образом, чтобы отсортированной оказалась n-я строка.

ЗАДАЧА 1. Сформировать матрицу H из элементов матрицы D, исключив третий столбец и вторую строку.

Вектор чисел в маткаде

ЗАДАЧА 2. Сформировать матрицу H следующим образом. Первая и последняя строки равны строкам матрицы D, остальные совпадают с матрицей C.

Вектор чисел в маткаде

ЗАДАЧА 3. Сформировать матрицу таким образом, чтобы элементы на главной диагонали были равны 1, выше главной диагонали – 2, а ниже – 3.

Вектор чисел в маткаде

ЗАДАЧА 4. Элементы матрицы формируются по формуле Вектор чисел в маткаде. Сформировать вектор из максимальных элементов столбцов матрицы А. Найти сумму элементов матрицы, расположенных в четных строках.

Вектор чисел в маткаде

ЗАДАЧА 5. Выполнить действия над матрицами А, В, С:

Вектор чисел в маткаде

ЗАДАЧА 6. Решить систему линейных уравнений при помощи правила Крамера:

Для решения поставленной задачи необходимо выполнить следующие действия:

1. Сформировать матрицу системы А и вектор правых частей b.

2. Вычислить главный определитель .

3. Сформировать вспомогательные матрицы (удобно скопировать матрицу А несколько раз и последовательно заменять в ней столбцы на вектор b) для вычисления определителей i;

4. Вычислить определители i;

5. Найти решение системы по формуле xi=∆i/∆.

Вектор чисел в маткаде

Вектор чисел в маткаде

ЗАДАЧА 7. Решить систему линейных уравнений методом обратной матрицы.

1. Сформировать матрицу коэффициентов и вектор свободных членов системы.

2. Решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы и вектора свободных членов.

Вектор чисел в маткаде

ЗАДАЧА 8. Решить систему линейных уравнений методом Гаусса.

Порядок решения задачи:

1. Сформировать матрицу коэффициентов и вектор свободных членов заданной системы.

2. Сформировать расширенную матрицу системы при помощи функции augment(A,b);

3. Используя функцию rref(A), привести расширенную матрицу к ступенчатому виду.

4. Получить решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте.

5. Выполнить проверку Ax-B=0.

Вектор чисел в маткаде

ЗАДАЧА 9. Решить систему при помощи функции lsolve:

Вектор чисел в маткаде

Вектор чисел в маткаде

Пример системы, которая не имеет решений:

Вектор чисел в маткаде

Вектор чисел в маткаде

Пример системы, которая имеет бесконечное множество решений

Вектор чисел в маткаде Вектор чисел в маткадеВектор чисел в маткаде

ЗАДАЧА 10. Решить систему при помощи решающего блока.

Решающий блок начинается с ключевого слова Given (Дано), которое необходимо ввести с клавиатуры.

Правее и ниже ключевого слова записываются уравнения системы.

Знак равенства в уравнениях вводится при помощи клавиш Ctrl+= или выбирается на панели инструментов Boolean.

Правее и ниже последнего уравнения системы вводится функция Find(x1,x2,…xn) (Найти), в скобках перечисляются имена переменных, значения которых нужно найти.

Численное решение системы можно получить, поставив знак равенства после функции Find(x1,x2,…xn).

Символьное решение получится, если после функции Find(x1,x2,…xn) указать знак стрелки, который находится в панели инструментов Symbolic (Ctrl+.).

Видео:7. MathCad. Векторы и матрицыСкачать

7. MathCad. Векторы и матрицы

Векторы и матрицы в MathСad

Вы уже наверняка не раз сталкивались с такими понятиями как векторы и матрицы. Вектор – это обыкновенный столбец с числами. Матрица представляет собой сборный блок с объектами. Именно на работе с этими элементами построен принцип функционирования программы Excel. В этом уроке мы расскажем о том, как работать с такими вычислениями в программе Маткад и акцентируем внимание на том, почему процесс работы в данном ПО куда проще и удобнее.

Мы уже рассказывали в своих уроках о том, что все наши векторы начинались с элемента с нулевым значением. Сейчас же мы поставим номером первого элемента цифру один, ведь так нам гораздо проще будет сориентироваться в учебном материале.

Вектор чисел в маткаде

Данное значение можно внести прямо в рабочее поле.

Вектор чисел в маткаде

Посмотрите на матрицы на рисунке ниже.

Вектор чисел в маткаде

Как вы можете заметить, в них входят и числа, и функции. Помимо этого, сюда можно внести и текст. Чтобы вывести элемент матрицы, воспользуйтесь подстрочным индексом.

Вектор чисел в маткаде

Матрицы, описанные на скрине повыше, относятся к квадратному типу. Тем не менее, пользователь может самостоятельно устанавливать их размерные рамки.

Вектор чисел в маткаде

Примите во внимание, что первое число обозначает общую нумерацию строчки, а второе – номер столбика.

Вектор чисел в маткаде

Для векторного столбца второй индекс можно удалить. Для строки же он является обязательным.

Вектор чисел в маткаде

Нужные команды, для всевозможного выделения строчек или столбиков вы всегда сможете отыскать во вкладке «Математика».

Вектор чисел в маткаде

Вектор чисел в маткаде

Большинство операций для векторных и матричных конструкций вполне соответствуют работе со стандартными числами и функциями. Для того, чтобы отыскать обратную матрицу, потребуется действовать по аналогии с операциями деления. Пользователь может записать операторы, задав им наименования матриц и векторов. Например, это может выглядеть так:

Вектор чисел в маткаде

Более подробно мы рассмотрим данный опционал немного погодя. Стоит отметить, что такая функция нуждается в девяти операциях умножения и в таком же количестве деления. Согласитесь, что расписывать все эти процессы достаточно скучно. К тому же, с большими матрицами такой подход нерациональный.

Методика применения векторов отличается значительным разнообразием. Чтобы разработать вектор или матрицу, понадобится открыть вкладку «Вставить матрицу». На экране появится сетка с изображением маленьких квадратиков.

Вектор чисел в маткаде

Перемещаем указатель на эту сетку. Настраиваем курсор на нужные габариты матрицы. Кликаем дважды ЛКМ.

На экране появляется новая матрица.

Вектор чисел в маткаде

Матрица может быть переименована, после того, как пользователь дважды кликнет по левой скобке.

Вектор чисел в маткаде

Чтобы быстро вставить или удалить строчки да столбцы, можно вызвать контекстное меню «Операторы с векторамиматрицами» на одноименной вкладке.

Вектор чисел в маткаде

Работа с матрицами

Эффекты от матриц или вектором гораздо проще сообразить, пользуясь специально разработанными символами. Обратите внимание на скрин ниже.

Вектор чисел в маткаде

Оператор транспортировки вызывается посредством выполнения операции Математика –> Операторы –> Векторы и матрицы:

Вектор чисел в маткаде

Кликаем по правой стороне матрицы и применяем оператор. Он подходит как для символьных, так и численных матриц.

Вектор чисел в маткаде

Операции в векторах часто выполняются по одному элементу. В этой ситуации можно воспользоваться очень удобным оператором, который отвечает за разработку вектора. Чтобы перемножить два вектора, понадобится выполнить простой пример.

Вектор чисел в маткаде

Теперь нам нужно выбрать нужные параметры и активировать векторизацию.

Вектор чисел в маткаде

Вычисляем заданные параметры и смотрим на результат. Первый элемент приумножился на второй, и так далее.

Вектор чисел в маткаде

Еще примеры таких опций.

Вектор чисел в маткаде

Операции поэлементного типа могут применяться исключительно к массивам одинакового размера.

Добавление и вычитание

Данные операции относятся к поэлементному типу.

Вектор чисел в маткаде

Она также применяется к массивам одинакового размерного типа.

Пользуясь оператором, предназначенным для суммирования, можно отыскать сумму всех векторных частей.

Вектор чисел в маткаде

Скалярное произведение работает по представленному ниже принципу.

Вектор чисел в маткаде

При таком типе умножения матриц, программа занимается умножением данных элементов по столбцам. Данная операция может применяться исключительно к тем матрицам, которые характеризуются равным количеством строчек и столбцов.

Вектор чисел в маткаде

Обратите внимание, что немалая роль отводится поочередности множителей.

Вектор чисел в маткаде

Только в редких случаях скалярное произведение может стать коммутативным.

Вектор чисел в маткаде

Скаляр двух векторов показывает результат как на фотографии ниже.

Вектор чисел в маткаде

Данная опция может использоваться исключительно для двух векторных столбов из трех элементов.

Вектор чисел в маткаде

Векторное произведение часто используется для механики, гидродинамики и огромного количества подобных сфер деятельности.

Обратная матрица может быть применима для квадратных матриц:

Вектор чисел в маткаде

В результате у нас получится матрица единичного типа

Вектор чисел в маткаде

Если произвести матрицу и единичную матрицу, мы получим первоначальный вариант.

Вектор чисел в маткаде

Вектор чисел в маткаде

Определитель может быть разработан исключительно для матрицы квадратного типа. Он может быть нулевым в любых условиях. Обратная матрица имеет в своей структуре дроби, в состав которых входит определитель.

Вектор чисел в маткаде

В ситуациях, когда определитель установлен на ноль, к нему нереально подобрать обратную матрицу. Сама матрица автоматически становится сингулярной. О таких изменениях пользователь узнает из оповещения программы.

Вектор чисел в маткаде

В ситуациях со скалярами, определитель соответствует их модулям

Вектор чисел в маткаде

Команда «определитель» помогает отыскать длину вектора .

Вектор чисел в маткаде

Уважаемые пользователи, хотим Вас проинформировать о том, что некоторые антивирусные программы и браузеры ложно срабатывают на дистрибутив программы MediaGet, считая его зараженным. Данный софт не содержит никаких вредоносных программ и вирусов и многие из антивирусов просто Вас предупреждают, что это загрузчик (Downloader). Если хотите избежать подобных проблем, просто добавьте MediaGet в список доверенных программ Вашей антивирусной программы или браузера.

Вектор чисел в маткаде

Выбрав нужную версию программы и кликнув ссылку, Вам на компьютер скачивается дистрибутив приложения MediaGet, который будет находиться в папке «Загрузки» для Вашего браузера. Находим этот файл с именем программы и запускаем его. И видим первый этап установки. Нажимаем унопку «Далее»

Вектор чисел в маткаде

Далее Вам предлагается прочитать и одобрить лицензионное соглашение. Нажимаем кнопку «Принимаю»

Вектор чисел в маткаде

В следующем окне Вам предлагается бесплатное полезное дополнительное программоное обеспечение, будь то антивирус или бразуер. Нажимаем кнопку «Принимаю». Также Вы можете отказаться от установки дополнительного ПО, нажав кнопку «Отклоняю»

Вектор чисел в маткаде

Далее происходит процесс установки программы. Вам нужно выбрать папку, в которую будут скачиваться нужные Вам файлы.

Вектор чисел в маткаде

Происходит завершение установки. Программа автоматически открывается и скачивает нужные Вам исходные файлы.

Обратите внимание, что предоставляемое программное обеспечение выкладывается исключительно для личного использования и ознакомления. Все файлы, доступные для скачивания, не содержат вирусов и вредоносных программ.

📹 Видео

Основные действия с матрицами и векторами в MathCAD 14 (20/34)Скачать

Основные действия с матрицами и векторами в MathCAD 14 (20/34)

Оператор векторизации в MathCAD 14 (23/34)Скачать

Оператор векторизации в MathCAD 14 (23/34)

Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)Скачать

Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)

Создание матриц в MathCAD 14 (18/34)Скачать

Создание матриц в MathCAD 14 (18/34)

Векторы и матрицыСкачать

Векторы и матрицы

Урок 4. МКЭ в Mathcad. Вектор узловой нагрузкиСкачать

Урок 4. МКЭ в Mathcad. Вектор узловой нагрузки

ВекторыСкачать

Векторы

Урок 8. МКЭ в Mathcad. Векторы концевых усилийСкачать

Урок 8. МКЭ в Mathcad. Векторы концевых усилий

Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристикСкачать

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристик

Матрицы и векторы. Настройки Mathcad при работе с матрицами. Урок 12Скачать

Матрицы и векторы. Настройки Mathcad при работе с матрицами. Урок 12

MathCad компланарность векторов.wmvСкачать

MathCad компланарность векторов.wmv

MathCad вычисление угла между векторами.wmvСкачать

MathCad вычисление угла между векторами.wmv

MathCAD Простейшие действия с матрицамиСкачать

MathCAD  Простейшие действия с матрицами

Векторная диаграмма токов в программе MathcadСкачать

Векторная диаграмма токов в программе Mathcad

Числа в Mathcad ExpressСкачать

Числа в Mathcad Express

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ
Поделиться или сохранить к себе: