Вектор ab ac bc

векторы AB и AC коллинеарны, верно ли что AB+AC=BC?)

Вектор ab ac bc

Нет, вообще говоря, неверно.
Например, если все векторы ненулевые, и точка В расположена между А и С, то АВ + ВС = АС, т. е. АС длиннее ВС.
Если бы было верно АВ + АС = ВС, то отсюда АС =ВС — АВ, т. е. АС короче ВС, что противоречит предыдущему.

Вектор ab ac bc

Это неверно ни для каких векторов, коллинеарные не исключение.
Если точка А — общая точка для них, то ВС равно РАЗНОСТИ векторов АВ и АС. По фигу коллинеарные они или нет.

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Векторное произведение векторов

Вектор ab ac bc

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:№770. Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если:Скачать

№770. Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если:

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор ab ac bc

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Вектор ab ac bc

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

Вектор ab ac bc

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
    Вектор ab ac bc
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
    Вектор ab ac bc
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Вектор ab ac bc

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

  • Вектор ab ac bc
  • Вектор ab ac bc

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Вектор ab ac bc

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

Вектор ab ac bc

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Вектор ab ac bc

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Вектор ab ac bc

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

Вектор ab ac bc

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
    Вектор ab ac bc
  2. Свойство дистрибутивности
    Вектор ab ac bc

Вектор ab ac bc
Сочетательное свойство
Вектор ab ac bc

Вектор ab ac bc

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Вектор ab ac bc

Вектор ab ac bc

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

Вектор ab ac bc

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Видео:№335. Упростите выражение: a) AB+MN+BC+CA+PQ+NM; б) FK+MQ+KP+AM+QK+PFСкачать

№335. Упростите выражение: a) AB+MN+BC+CA+PQ+NM; б) FK+MQ+KP+AM+QK+PF

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Вектор ab ac bc

Вектор ab ac bc

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Вектор ab ac bc

Вектор ab ac bc

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Вектор ab ac bc

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Вектор ab ac bc

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Вектор ab ac bc

Затем векторное произведение:

Вектор ab ac bc

Вычислим его длину:

Вектор ab ac bc

Подставим данные в формулы площадей параллелограмма и треугольника:

Вектор ab ac bc

Вектор ab ac bc

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

Вектор ab ac bc

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Вектор ab ac bc

Видео:№745. В прямоугольнике ABCD AB=3см, BC=4см, M-середина стороны AB.Скачать

№745. В прямоугольнике ABCD AB=3см, BC=4см, M-середина стороны AB.

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Вектор ab ac bc

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Векторное произведение векторов онлайн

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.

Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

Вектор ab ac bcВектор ab ac bc

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:

  • длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
    |c|=|[ab]|=|a||b|sinφ;(1)
  • вектор с ортогонален к каждому из векторов a и b;
  • вектор c направлен так, что тройка abc является правой.

Векторное произведение векторов обладает следующими свойствами:

  • [ab]=−[ba] ( антиперестановочность сомножителей);
  • [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
  • [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
  • [aa]=0 для любого вектора a.

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.

Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

S=|[ab]|=|a||b|sinφ.(2)

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Векторное произведение векторов в декартовых координатах

Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами

a=<x1, y1, z1>, b=<x2, y2, z2>.

Тогда векторное произведение этих векторов имеет вид:

[ab]=<y1z2y2z1, z1x2z2x1, x1y2x2y1>.(3)

Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:

Вектор ab ac bc

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:

Вектор ab ac bc(4)
Вектор ab ac bcВектор ab ac bcВектор ab ac bcВектор ab ac bc

Из последнего равенства и соотношений (4), получим:

Вектор ab ac bcВектор ab ac bc

которая эквивалентна равенству (3).

Видео:Косинус угла между векторами. Коллинеарность векторовСкачать

Косинус угла между векторами.  Коллинеарность векторов

Векторное произведение векторов на примерах

Пример 1. Найти векторное произведение векторов [ab], где

Вектор ab ac bc, Вектор ab ac bc.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Вектор ab ac bc.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Вектор ab ac bcВектор ab ac bcВектор ab ac bc.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

Вектор ab ac bc.

Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: Вектор ab ac bc, конечная точка вектора a: Вектор ab ac bc, вектор b имеет вид Вектор ab ac bc.

Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:

Вектор ab ac bc.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Вектор ab ac bc.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Вектор ab ac bcВектор ab ac bcВектор ab ac bc.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

📽️ Видео

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

№762. Сторона равностороннего треугольника ABC равна а. Найдите: а) |AB+BC|Скачать

№762. Сторона равностороннего треугольника ABC равна а. Найдите: а) |AB+BC|

№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторыСкачать

№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторы

№328. Дан тетраэдр ABCD. Докажите, что: а) АВ + BD=AC + CD; б) AB + BC = DC + AD;Скачать

№328. Дан тетраэдр ABCD. Докажите, что: а) АВ + BD=AC + CD; б) AB + BC = DC + AD;

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.
Поделиться или сохранить к себе: