В любом описанном четырехугольнике противоположные стороны равны

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

В любом описанном четырехугольнике противоположные стороны равны

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный В любом описанном четырехугольнике противоположные стороны равныАВС.

Доказать: в В любом описанном четырехугольнике противоположные стороны равныАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

В любом описанном четырехугольнике противоположные стороны равны

2. Точка О равноудалена от сторон В любом описанном четырехугольнике противоположные стороны равныАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны В любом описанном четырехугольнике противоположные стороны равныАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в В любом описанном четырехугольнике противоположные стороны равныАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что В любом описанном четырехугольнике противоположные стороны равныАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: В любом описанном четырехугольнике противоположные стороны равны. Тогда, по свойству площадей, площадь треугольника В любом описанном четырехугольнике противоположные стороны равныАВС выражается формулой: В любом описанном четырехугольнике противоположные стороны равны, где В любом описанном четырехугольнике противоположные стороны равны— периметр В любом описанном четырехугольнике противоположные стороны равныАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

В любом описанном четырехугольнике противоположные стороны равны

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

В любом описанном четырехугольнике противоположные стороны равны

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = В любом описанном четырехугольнике противоположные стороны равныи ВС + АD = В любом описанном четырехугольнике противоположные стороны равны, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

В любом описанном четырехугольнике противоположные стороны равны

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

В любом описанном четырехугольнике противоположные стороны равны

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

В любом описанном четырехугольнике противоположные стороны равны

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

В любом описанном четырехугольнике противоположные стороны равны

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

В любом описанном четырехугольнике противоположные стороны равны

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

В любом описанном четырехугольнике противоположные стороны равны

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

В любом описанном четырехугольнике противоположные стороны равны

В любом описанном четырехугольнике противоположные стороны равны

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

В любом описанном четырехугольнике противоположные стороны равны

В любом описанном четырехугольнике противоположные стороны равны

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбВ любом описанном четырехугольнике противоположные стороны равныВ любой ромб можно вписать окружность
КвадратВ любом описанном четырехугольнике противоположные стороны равныВ любой квадрат можно вписать окружность
ПрямоугольникВ любом описанном четырехугольнике противоположные стороны равныВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммВ любом описанном четырехугольнике противоположные стороны равныВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидВ любом описанном четырехугольнике противоположные стороны равныВ любой дельтоид можно вписать окружность
ТрапецияВ любом описанном четырехугольнике противоположные стороны равныВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
В любом описанном четырехугольнике противоположные стороны равны
КвадратВ любом описанном четырехугольнике противоположные стороны равны

В любой квадрат можно вписать окружность

ПрямоугольникВ любом описанном четырехугольнике противоположные стороны равны

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммВ любом описанном четырехугольнике противоположные стороны равны

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидВ любом описанном четырехугольнике противоположные стороны равны

ТрапецияВ любом описанном четырехугольнике противоположные стороны равны

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

В любом описанном четырехугольнике противоположные стороны равны

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

В любом описанном четырехугольнике противоположные стороны равны

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

В любом описанном четырехугольнике противоположные стороны равны

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

В любом описанном четырехугольнике противоположные стороны равны

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

📹 Видео

Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математикеСкачать

Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математике

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Геометрия 11 класс. Вписанный четырехугольникСкачать

Геометрия 11 класс. Вписанный четырехугольник

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/Скачать

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/

ОГЭ. Модуль Геометрия. Периметр четырёхугольника, описанного около окружности, равен 56Скачать

ОГЭ. Модуль Геометрия. Периметр четырёхугольника, описанного около окружности, равен 56

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

8 класс. Четырехугольник и окружностьСкачать

8 класс.  Четырехугольник  и окружность

Вписанная окружность 2Скачать

Вписанная окружность 2

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

Задание 26 Описанная трапецияСкачать

Задание 26  Описанная трапеция

ГЕОМЕТРИЯ 8 класс : Вписанная окружностьСкачать

ГЕОМЕТРИЯ 8 класс : Вписанная окружность

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс
Поделиться или сохранить к себе: