В любом четырехугольнике суммы противоположных сторон равны

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

В любом четырехугольнике суммы противоположных сторон равны

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

В любом четырехугольнике суммы противоположных сторон равны

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

В любом четырехугольнике суммы противоположных сторон равны

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

В любом четырехугольнике суммы противоположных сторон равны

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

В любом четырехугольнике суммы противоположных сторон равны

В любом четырехугольнике суммы противоположных сторон равны

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

В любом четырехугольнике суммы противоположных сторон равны

В любом четырехугольнике суммы противоположных сторон равны

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбВ любом четырехугольнике суммы противоположных сторон равныВ любой ромб можно вписать окружность
КвадратВ любом четырехугольнике суммы противоположных сторон равныВ любой квадрат можно вписать окружность
ПрямоугольникВ любом четырехугольнике суммы противоположных сторон равныВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммВ любом четырехугольнике суммы противоположных сторон равныВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидВ любом четырехугольнике суммы противоположных сторон равныВ любой дельтоид можно вписать окружность
ТрапецияВ любом четырехугольнике суммы противоположных сторон равныВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
В любом четырехугольнике суммы противоположных сторон равны
КвадратВ любом четырехугольнике суммы противоположных сторон равны

В любой квадрат можно вписать окружность

ПрямоугольникВ любом четырехугольнике суммы противоположных сторон равны

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммВ любом четырехугольнике суммы противоположных сторон равны

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидВ любом четырехугольнике суммы противоположных сторон равны

ТрапецияВ любом четырехугольнике суммы противоположных сторон равны

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

В любом четырехугольнике суммы противоположных сторон равны

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный В любом четырехугольнике суммы противоположных сторон равныАВС.

Доказать: в В любом четырехугольнике суммы противоположных сторон равныАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

В любом четырехугольнике суммы противоположных сторон равны

2. Точка О равноудалена от сторон В любом четырехугольнике суммы противоположных сторон равныАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны В любом четырехугольнике суммы противоположных сторон равныАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в В любом четырехугольнике суммы противоположных сторон равныАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что В любом четырехугольнике суммы противоположных сторон равныАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: В любом четырехугольнике суммы противоположных сторон равны. Тогда, по свойству площадей, площадь треугольника В любом четырехугольнике суммы противоположных сторон равныАВС выражается формулой: В любом четырехугольнике суммы противоположных сторон равны, где В любом четырехугольнике суммы противоположных сторон равны— периметр В любом четырехугольнике суммы противоположных сторон равныАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

В любом четырехугольнике суммы противоположных сторон равны

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

В любом четырехугольнике суммы противоположных сторон равны

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = В любом четырехугольнике суммы противоположных сторон равныи ВС + АD = В любом четырехугольнике суммы противоположных сторон равны, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

В любом четырехугольнике суммы противоположных сторон равны

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

В любом четырехугольнике суммы противоположных сторон равны

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

В любом четырехугольнике суммы противоположных сторон равны

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

🎥 Видео

Геометрия 8 класс (Урок№33 - Описанная окружность.)Скачать

Геометрия 8 класс (Урок№33 - Описанная окружность.)

Вписанный четырехугольникСкачать

Вписанный четырехугольник

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Задание 26 Описанная трапецияСкачать

Задание 26  Описанная трапеция

Вписанная окружность 2Скачать

Вписанная окружность 2

ГЕОМЕТРИЯ 8 класс: Параллелограмм и его признаки (свойства).Скачать

ГЕОМЕТРИЯ 8 класс: Параллелограмм и его признаки (свойства).

8 класс. Четырехугольник и окружностьСкачать

8 класс.  Четырехугольник  и окружность

Геометрия 8 класс за 1 час | Математика | УмскулСкачать

Геометрия 8 класс за 1 час | Математика | Умскул

8 класс, 5 урок, Признаки параллелограммаСкачать

8 класс, 5 урок, Признаки параллелограмма

ПОЧЕМУ СУММА УГЛОВ ЧЕТЫРЁХУГОЛЬНИКА РАВНА 360? #shorts #егэ #огэ #математика #геометрияСкачать

ПОЧЕМУ СУММА УГЛОВ ЧЕТЫРЁХУГОЛЬНИКА РАВНА 360? #shorts #егэ #огэ #математика #геометрия

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

ГЕОМЕТРИЯ 8 класс : Вписанная окружностьСкачать

ГЕОМЕТРИЯ 8 класс : Вписанная окружность

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия
Поделиться или сохранить к себе: