- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- Сколько можно провести диагоналей из одной вершины 1)в девятиугольнике 2)в четырехугольнике?
- Сколько можно провести диагоналей из одной вершины девятиугольника?
- Сколько диагоналей можно провести из одной вершины А прямоугольника?
- Сколько диагоналей можно провести из одной вершины в 1) девятиугольнике ?
- СКОЛЬКО ДИАГОНАЛЕЙ МОЖНО ПРОВЕСТИ ИЗ ОДНОЙ ВЕРШИНЫ ВЫПУКЛОГО МНОГОУГОЛЬНИКА ЕСЛИ СУММА ЕГО УГЛОВ РАВНА 1980 ГРАДУСОВ?
- Сколько всего диагоналей можно провести в пятиугольнике, в девятиугольнике, в п — угольнике, где п — 3?
- Сколько диагоналей можно провести из одной вершины, девятиугольника?
- Помогите пожалуйста?
- Сколько диагоналей можно провести из одной вершины прямоугольниблондка9?
- Сколько диагоналей можно провести в четырехугольнике, в пятиугольнике , в шестиугольнике?
- Сколько диагоналей можно провести из одной вершины многоугольника , если сумма его углов равна 2700 градусов ?
- Мерзляк 5 класс — § 13. Многоугольники. Равные фигуры
- Вопросы к параграфу
- Решаем устно
- Упражнения
- Упражнения для повторения
- Задача от мудрой совы
- 🎬 Видео
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Диагонали в многоугольниках. Есть ли зависимость между количеством вершин и диагоналей в n-угольникеСкачать
Сколько можно провести диагоналей из одной вершины 1)в девятиугольнике 2)в четырехугольнике?
Математика | 5 — 9 классы
Сколько можно провести диагоналей из одной вершины 1)в девятиугольнике 2)в четырехугольнике.
в общем случае в любом n — угольникеиз одной вершины можно провести
n — 3 диагонали, так как вычитаются 3 вершины (сама вершина и две соседние).
Видео:8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1Скачать
Сколько можно провести диагоналей из одной вершины девятиугольника?
Сколько можно провести диагоналей из одной вершины девятиугольника.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Сколько диагоналей можно провести из одной вершины А прямоугольника?
Сколько диагоналей можно провести из одной вершины А прямоугольника.
Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать
Сколько диагоналей можно провести из одной вершины в 1) девятиугольнике ?
Сколько диагоналей можно провести из одной вершины в 1) девятиугольнике ?
2) в четырехугольнике ?
Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать
СКОЛЬКО ДИАГОНАЛЕЙ МОЖНО ПРОВЕСТИ ИЗ ОДНОЙ ВЕРШИНЫ ВЫПУКЛОГО МНОГОУГОЛЬНИКА ЕСЛИ СУММА ЕГО УГЛОВ РАВНА 1980 ГРАДУСОВ?
СКОЛЬКО ДИАГОНАЛЕЙ МОЖНО ПРОВЕСТИ ИЗ ОДНОЙ ВЕРШИНЫ ВЫПУКЛОГО МНОГОУГОЛЬНИКА ЕСЛИ СУММА ЕГО УГЛОВ РАВНА 1980 ГРАДУСОВ.
Видео:Диагональ многоугольникаСкачать
Сколько всего диагоналей можно провести в пятиугольнике, в девятиугольнике, в п — угольнике, где п — 3?
Сколько всего диагоналей можно провести в пятиугольнике, в девятиугольнике, в п — угольнике, где п — 3?
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Сколько диагоналей можно провести из одной вершины, девятиугольника?
Сколько диагоналей можно провести из одной вершины, девятиугольника?
Пожалуйста, подробное решение.
Спасибо за ответ!
Видео:Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать
Помогите пожалуйста?
)))))))) Сколько диагоналей можно провести из одной вершины : а)пятиугольника б)девятиугольника в)n — угольника, где n = 3?
Сколько всего диагоналей можно провести в пятиугольнике, девятиугольнике, n — угольнике, где n = 3?
Видео:8 класс, 4 урок, ПараллелограммСкачать
Сколько диагоналей можно провести из одной вершины прямоугольниблондка9?
Сколько диагоналей можно провести из одной вершины прямоугольниблондка9.
Видео:Четырехугольник ABCD. Свойства. Диагональ. Геометрия 8 класс. Глава 5.Скачать
Сколько диагоналей можно провести в четырехугольнике, в пятиугольнике , в шестиугольнике?
Сколько диагоналей можно провести в четырехугольнике, в пятиугольнике , в шестиугольнике.
Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Сколько диагоналей можно провести из одной вершины многоугольника , если сумма его углов равна 2700 градусов ?
Сколько диагоналей можно провести из одной вершины многоугольника , если сумма его углов равна 2700 градусов ?
На этой странице находится ответ на вопрос Сколько можно провести диагоналей из одной вершины 1)в девятиугольнике 2)в четырехугольнике?, из категории Математика, соответствующий программе для 5 — 9 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Математика. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.
Наибольший общий делитель чисел 725 и 375 — 25. Наибольшая длина стороны плитки будет — 25 см. S пола = 725 * 375 = 271875 cм квадратных S плитки = 25 * 25 = 625 см квадратных 271875 : 625 = 435 плиток потребуется Ответ — 435 шт.
Х — первая корзина у — вторая корзина х + у = 46 х — 5 = у + 5 Х — 10 = у 2х — 10 = 46 х = 28 у = 18 Удачи.
В первой было 18 а во второй 28.
1) 2abc / 6b = ac / 3 2) 12ab / 16ac = 3b / 4c 3) 14xy / 28y = х / 2 4) 32z / 24xyz = 4 / 3xy.
Тут они все увеличиваются на 10 кроме 27.
12 / 25 = 48 / 100 = 0, 48 так думаю.
3a(a — 2) — (a — 3)² = 3a² — 6 — (a² — 6a + 9) = 3a² — 6 — a² + 6a — 9 = 2a² + 6a — 15.
220 * 3 = 660 г крупы взяла бабушка из пакета 1000 — 660 = 340 г осталось в пакете = = = = = = = = = = = = = = = = = = = = = = = = = = = 136 : 4 = 34 км / час скорость теплохода 238 : 34 = 7 часов = = = = = = = = = = = = = = = = = = = 80 * 4 = 320 км..
АВ = ВС ВЕ = 6см ВЕ = 2 / 3ВС Найти расстояние между серединами АВиСЕ — ? ВЕ = 2 / 3ВС 6 = 2 / 3 ВС ВС = 6 : 2 / 3 = 6 * 3 / 2 = 18 / 2 = 9(см) ЕС = ВС — ВЕ = 9 — 6 = 3см АВ = 9см Расстояние = 1 / 2АВ + ВЕ + 1 / 2ЕС = 1 / 2 * 9 + 6 + 1 / 2 * 3 = 4, ..
1) 3600 — 2400 = 1200(км) — разница между расстояниями. 2) 1200 : 3 = 400(км / ч) — скорость вертолётов. 3) 3600 : 400 = 9(ч) — первый вертолёт был в полёте. 4) 2400 : 400 = 6(ч) — второй вертолёт был в полёте. Ответ : 9 часов первый вертолёт был..
Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать
Мерзляк 5 класс — § 13. Многоугольники. Равные фигуры
Вопросы к параграфу
1. Какая фигура ограничивает многоугольник? — Замкнутая ломаная, звенья которой не пересекаются.
2. Могут ли звенья ломаной, ограничивающей многоугольник, пересекаться? — Нет, не могут.
3. Какие элементы многоугольника вы знаете? — Вершина, сторона, углы многоугольника.
4. Как называют и обозначают многоугольник? — Многоугольники называют и обозначают по его вершинам. Чтобы записать название многоугольника, надо последовательно записать все его вершины.
5. Что называют периметром многоугольника? — Периметр многоугольника — это сумма длин все его сторон.
6. Какие многоугольники называют равными? — Многоугольники называют равными, если они совпадают при наложении.
7. Какие фигуры называют равными? — Фигуры называют равными, если они совпадают при наложении.
Решаем устно
1. Сумму чисел 24 и 18 уменьшите на 33.
(24 + 18) — 33 = 42 — 33 = 9
2. Разность чисел 30 и 14 увеличьте в 3 раза.
(30 — 14) • 3 = 16 • 48
3. Произведение чисел 12 и 5 увеличьте на 19.
(12 • 5) + 19 = 60 + 19 = 79
4. Частное чисел 189 и 9 уменьшите в 7 раз.
(189 : 9) : 7 = 21 : 7 = 3
5. Укажите среди данных отрезков равные, если:
- АВ = 5 см 3 мм = 53 мм = TQ
- CD = 4 м 5 см = 405 см
- РК = 45 см
- EF = 2 дм 8 мм = 20 см 8 мм = 208 мм = MN
- TQ = 53 мм = 5 см 3 мм = АВ
- MN= 208 мм = 20 см 8 мм = 2 дм 8 мм = EF
Ответ: АВ = TQ и EF = MN.
Упражнения
321. Назовите вершины и стороны пятиугольника, изображённого на рисунке 109.
- Вершины пятиугольника: N, K, P, E, M
- Стороны пятиугольника: NK, KP, PE, EM, EN.
322. Начертите: 1) четырёхугольник; 2) пятиугольник; 3) шестиугольник; 4) семиугольник .
- Четырехугольник ABCD
- Пятиугольник EFGHJ
- Шестиугольник SRQWXZ
- семиугольник TKLMNOP
323. Вычислите периметр пятиугольника, стороны которого равны 2 см, 4 см, 5 см 5 мм, 6 см, 7 см.
Периметр многоугольника равен сумме длин его сторон.
2 см + 4 см + 5 см 5 мм + 6 см + 7 см = 24 см 5 мм — периметр данного пятиугольника.
Ответ: 24 см 5 мм.
324. Вычислите периметр шестиугольника, три стороны которого равны по 8 см, а три другие — по 10 см.
Периметр многоугольника равен сумме длин его сторон.
8 • 3 + 10 • 3 = 24 + 30 = 54 (см) — периметр данного шестиугольника.
325. Нарисуйте в тетради фигуру, равную той, которая изображена на рисунке 110.
326. Нарисуйте в тетради фигуру, равную той, которая изображена на рисунке 111.
327. Одна из сторон четырёхугольника равна 8 см, вторая сторона в 3 раза больше первой, а третья — на 7 см меньше второй и на 9 см больше четвёртой. Вычислите периметр четырёхугольника.
1) 8 • 3 = 24 (см) — длина второй стороны четырёхугольника.
2) 24 — 7 = 17 (см) — длина третьей стороны четырёхугольника.
3) 17 — 9 = 8 (см) — длина четвёртой стороны четырёхугольника.
4) 8 + 24 + 17 + 8 = 57 (см) — периметр четырёхугольника.
328. Стороны пятиугольника пронумеровали. Первая сторона равна 4 см, а каждая следующая сторона на 2 см длиннее предыдущей. Вычислите периметр пятиугольника.
1) 4 + 2 = 6 (см) — длина второй стороны пятиугольника.
2) 6 + 2 = 8 (см) — длина третьей стороны пятиугольника.
3) 8 + 2 = 10 (см) — длина четвёртой стороны пятиугольника.
4) 10 + 2 = 12 (см) — длина пятой стороны пятиугольника.
5) 4 + 6 + 8 + 10 + 12 = 40 (см) — периметр пятиугольника.
329. 1) Сколько диагоналей можно провести из одной вершины: а) пятиугольника; б) девятиугольника; в) и-угольника, где п > 3?
а) Из одной вершины пятиугольника можно провести 2 диагонали.
б) Из одной вершины девятиугольника можно провести 6 диагоналей.
в) Из одной вершины n-угольника можно провести (n-3) диагоналей, так как:
- первая вершина является исходной;
- диагональ ко второй вершине совпадает со одной из сторон, прилегающей к исходной вершине;
- диагональ к последней вершине совпадает с другой из сторон, прилегающей к исходной вершине.
2) Сколько всего диагоналей можно провести: а) в пятиугольнике; б) в девятиугольнике; в) в и-угольнике, где п > 3?
а) Мы знаем, что из одной вершины пятиугольника можно провести 2 диагонали (n-3), Значит из 5 вершин можно провести 5 • 2 = 10 диагоналей (n • (n-3)). Но если провести все 10 диагоналей, то каждая пара из них будет совпадать, так как одна диагональ всегда соединяет две вершины. Значит всего в пятиугольнике можно провести 10 : 2 = 5 диагоналей ((n •(n-3) : 2). Рисунок подтверждает наш вывод.
б) Мы знаем, что из одной вершины девятиугольника можно провести 6 диагоналей (n-3 = 9 — 3 = 6), Значит из 9 вершин можно провести 9 • 6 = 54 диагонали (n • (n-3) = 9 • (9 — 3) = 9 • 6 = 54). Но если провести все 54 диагонали, то каждая пара из них будет совпадать, так как одна диагональ всегда соединяет две вершины. Значит всего в девятиугольнике можно провести 54 : 2 = 27 диагоналей ((n • (n-3) : 2 = 9 • (9 — 3) : 2 = 9 • 6 : 2 = 54 : 2 = 27). Рисунок подтверждает наш вывод.
в) Исследуя предыдущие два задания мы вывели формулу, по которой можно посчитать количество возможных диагоналей в n-угольнике, при n > 3: n • (n-3) : 2. Это значит, у количество диагоналей:
- у четырёхугольника — n • (n-3) : 2 = 4 • (4 — 3) : 2 = 4 • 1 : 2 = 4 : 2 = 2 — верно
- у шестиугольника — n • (n-3) : 2 = 6 • (6 — 3) : 2 = 6 • 3 : 2 = 18 : 2 = 9 — верно
- у семиугольника — n • (n-3) : 2 = 7 • (7 — 3) : 2 = 7 • 4 : 2 = 1=28 : 2 = 14 — верно
- и т.д.
Ответ: 5, 27, n • (n-3) : 2.
330. Как, используя шаблон угла, градусная мера которого 13°, построить угол, градусная мера которого равна 2°?
Для того, чтобы используя шаблон угла, градусная мера которого 13°, построить угол, градусная мера которого равна 2° надо:
- прочертить прямую линию и отметить на ней точку вершины развёрнутого угла;
- начиная от одного из лучей развёрнутого угла последовательно 14 раз отложить по шаблону угол в 13°;
- так как 13° • 14 = 182°, то последний из отложенных по шаблону углов будет на 2° выходить за границы развёрнутого угла;
- угол, выходящий за границы развёрнутого угла, как раз и будет искомым углом с градусной мерой 2°.
331. Как построить угол, градусная мера которого 1°, используя шаблон угла, градусная мера которого равна:
а) 19°
Для того, чтобы используя шаблон угла, градусная мера которого 19°, построить угол, градусная мера которого равна 1° надо:
- прочертить прямую линию и отметить на ней точку вершины развёрнутого угла;
- начиная от одного из лучей развёрнутого угла последовательно 19 раз отложить по шаблону угол в 19°;
- так как 19° • 19 = 361°, то последний из отложенных по шаблону углов будет на 1° выходить за границы двух развёрнутых углов;
- угол, выходящий за границы развёрнутых углов, как раз и будет искомым углом с градусной мерой 1°.
б) 7°
Для того, чтобы используя шаблон угла, градусная мера которого 7°, построить угол, градусная мера которого равна 1° надо:
- прочертить прямую линию и отметить на ней точку вершины развёрнутого угла.
- провести из этой точки перпендикуляр к прямой;
- начиная от одного из лучей развёрнутого угла последовательно 13 раз отложить по шаблону угол в 7°;
- так как 7° • 13 = 91°, то последний из отложенных по шаблону углов будет на 1° выходить за границы прямого угла образованного перпендикуляром к прямой;
- угол, выходящий за границы прямого угла, как раз и будет искомым углом с градусной мерой 1°.
332. Существует ли многоугольник с периметром, равным 1 000 000 см, который можно целиком расположить в квадрате со стороной 1 см?
Да, теоретически такой многоугольник существует. Для этого надо из квадрата со стороной 1 см вырезать множество полосок либо треугольников, либо ещё каких-нибудь фигур вдоль нескольких сторон исходного квадрата. Точное количество таких вырезанных фигур будет зависеть от длины вырезаемых из квадрата сторон фигуры, а также от длины оставшихся от исходного квадрата сторон.
В реальности такую операцию способны выполнить только суперточные приборы, например лазерный принтер. Кроме того, необходимо провести очень точный расчёт вырезаемых фигур.
Упражнения для повторения
333. Сравните:
1) 3 986 г и 4 кг: 4 кг = 4000 г ⇒ 3 986 г
2) 6 м и 712 см: 6 м = 600 см ⇒ 600 см
3) 60 см и 602 мм: 60 см = 600 мм ⇒ 600 мм
4) 999 кг и 10 ц: 10 ц = 1000 кг ⇒ 999 кг
334. Выполните сложение, выбирая удобный порядок вычислений:
1) (636 + 927) + 364 = (636 + 364) + 927 = 1 000 + 927 = 1 927
2) (425 + 798) + 675 = (425 + 675) + 798 = 1 100 + 798 = 1 898
3) 212 + 493 + 788 + 807 = (212 + 788) + (493 + 807) = 1 000 + 1 300 = 2 300
4) 161 + 455 + 839 + 945 = (161 + 839) + (455 + 945) = 1 000 + 1 400 = 2 400
335. Известно, что ∠ABC = 74°, а луч BD — его биссектриса. Вычислите величину угла DBC.
Мы знаем, что биссектриса угла всегда делит угол пополам. Значит:
∠DBC = ∠ABC : 2 = 74° : 2 = 37°
336. Высота самой высокой горы Западной Европы Монблан равна 4 809 м. Она на 2 151 м ниже самой высокой горы Южной Америки Аконкагуа, которая на 770 м выше самой высокой горы Северной Америки Денали. Какова высота самой высокой горы Африки Килиманджаро, если она на 295 м ниже горы Денали? Какова высота самой высокой горы мира Джомолунгмы (Эверест) (рис. 112), если она на 2 953 м выше горы Килиманджаро?
1) 4 809 + 2 151 = 6 960 (м) — высота горы Аконкагуа.
2) 6 960 — 770 = 6 190 (м) — высота горы Денали.
3) 6 190 — 295 = 5 895 (м) — высота горы Килиманджаро.
4) 5 895 + 2 953 = 8 848 (м) — высота горы Джомолунгма.
Ответ: 8 848 метров.
Задача от мудрой совы
337. Лимоны одинаковой массы продают поштучно. Масса каждого лимона составляет целое количество граммов. Купили больше двух, но меньше семи лимонов. Масса всей покупки составляет 850 г. Какова масса одного лимона?
Так как купили больше двух, но меньше семи лимонов, то количество купленных лимонов может быть либо 3, либо 4, либо 5, либо 6.
Масса каждого лимона — целое число, причём все лимоны одинаковые. Проверим, на какое из возможных чисел (3, 4, 5 или 6) общая масса покупки 850 г делится без остатка. Для этого применим метод подбора.
Под заданные условия подходит только число 5.
🎬 Видео
Геометрия 8 класс. Урок 1. Четырехугольник и его элементыСкачать
Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать
Четырехугольники. Вебинар | МатематикаСкачать
ОГЭ без рекламы математика 11 и 12 вариант задача 25Скачать
Геометрия Диагонали четырехугольника точкой пересечения делятся пополам, одна из его сторон равнаСкачать
В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать
№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать