Условие ортогональности трех векторов

Ортогональность векторов. Перпендикулярность векторов.

Вектора a и b называются ортогональными, если угол между ними равен 90°. (рис. 1).

Условие ортогональности трех векторов
рис. 1

Примеры задач на ортогональность векторов

Примеры плоских задач на ортогональность векторов

Так в случае плоской задачи для векторов a = < ax ; ay > и b = < bx ; by > , условие ортогональности запишется следующим образом:

Найдем скалярное произведение этих векторов:

a · b = 1 · 2 + 2 · (-1) = 2 — 2 = 0

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

a · b = 3 · 7 + (-1) · 5 = 21 — 5 = 16

Ответ: так как скалярное произведение не равно нулю, то вектора a и b не ортогональны.

Найдем скалярное произведение этих векторов:

a · b = 2 · n + 4 · 1 = 2 n + 4
2 n + 4 = 0
2 n = -4
n = -2

Ответ: вектора a и b будут ортогональны при n = -2.

Примеры пространственных задач на ортогональность векторов

Так в случае пространственной задачи для векторов a = < ax ; ay ; az > и b = < bx ; by ; bz >, условие ортогональности запишется следующим образом:

Найдем скалярное произведение этих векторов:

a · b = 1 · 2 + 2 · (-1) + 0 · 10 = 2 — 2 + 0 = 0

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

a · b = 2 · 3 + 3 · 1 + 1 · (-9) = 6 + 3 -9 = 0

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

a · b = 2 · n + 4 · 1 + 1 · (-8)= 2 n + 4 — 8 = 2 n — 4
2 n — 4 = 0
2 n = 4
n = 2

Ответ: вектора a и b будут ортогональны при n = 2.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Ортогональные векторы и условие ортогональности

В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.

Ортогональные векторы: определение и условие

Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .

Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.

Примеры решения задач на ортогональность векторов

Плоские задачи на ортогональность векторов

Если дана плоская задача, то ортогональность для векторов a ¯ = и b ¯ = записывают следующим образом:

a ¯ × b ¯ = a x × b x + a y × b y = 0

Задача 1. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) = 2 — 2 = 0

Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.

Задача 2. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 3 × 7 + ( — 1 ) × 5 = 21 — 5 = 16

Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.

Задача 3. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут ортогональными.

Как решить?

Найдем скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = — 4 n = — 2

Ответ: векторы являются ортогональными при значении n = 2 .

Примеры пространственных задач на ортогональность векторов

При решении пространственной задачи на ортогональность векторов a ¯ = и b ¯ = условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .

Задача 4. Докажем, что векторы a ¯ = и b ¯ = являются ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) + 0 × 10 = 2 — 2 = 0

Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.

Задача 5. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут являться ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( — 8 ) = 2 n + 4 — 8 = 2 n — 4 2 n — 4 = 0 2 n = 4 n = 2

Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .

Ортогональные векторы евклидова пространства и их свойства

Два вектора [math]mathbf[/math] и [math]mathbf[/math] евклидова пространства называются ортогональными (перпендикулярными) , если их скалярное произведение равно нулю: [math]langle mathbf,mathbfrangle[/math] .

Система векторов [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] называется ортогональной, если все ее векторы попарно ортогональны, т.е. [math]langle mathbf_i, mathbf_jrangle=0[/math] при [math]ine j[/math] . Система векторов [math]mathbf_1, mathbf_2, ldots,mathbf_k[/math] называется ортонормированной , если все ее векторы попарно Ортогональны и длина (норма) каждого вектора системы равна единице, т.е.

Говорят, что вектор [math]mathbf[/math] ортогонален (перпендикулярен) множеству [math]M[/math] , если он ортогонален каждому вектору из [math]M[/math] . Ортогональность векторов обозначается знаком перпендикуляра [math](perp)[/math] .

Свойства ортогональных векторов

1. Нулевой вектор ортогонален каждому вектору пространства.

2. Взаимно ортогональные ненулевые векторы линейно независимы.

В самом деле, пусть векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] попарно ортогональны. Составим из них линейную комбинацию и приравняем ее нулевому вектору:

Умножим обе части равенства скалярно на вектор [math]mathbf_1:[/math]

Следовательно, [math]lambda_1cdot|mathbf_1|^2=0[/math] . Так как [math]mathbf_1ne mathbf[/math] , то [math]lambda_1=o[/math] . Аналогично доказываем, что [math]lambda_2=ldots= lambda_k=0[/math] , т.е рассматриваемая линейная комбинация тривиальная. Значит, ортогональная система векторов [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] линейно независима.

3. Если сумма взаимно ортогональных векторов равна нулевому вектору, то каждое из слагаемых равно нулевому вектору.

4. Если вектор [math]mathbf[/math] ортогонален каждому вектору системы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , то он также ортогонален и любой их линейной комбинации. Другими словами, если [math]mathbfperp mathbf_i,

i=1,ldots,k[/math] , то [math]mathbfperp operatorname (mathbf_1,ldots, mathbf_k)[/math] .

5. Если вектор [math]mathbf[/math] ортогонален подмножеству [math]M[/math] евклидова пространства, то он ортогонален и линейной оболочке этого подмножества, т.e. [math]mathbfperp M

6. Если [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] — ортогональная система векторов, то

Это утверждение является обобщением теоремы Пифагора.

Процесс ортогонализации Грама-Шмидта

Рассмотрим следующую задачу. Дана линейно независимая система [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] векторов конечномерного евклидова пространства. Требуется построить ортогональную систему [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] векторов того же пространства так, чтобы совпадали линейные оболочки:

Решение задачи находится при помощи процесса ортогонализации Грама–Шмидта , выполняемого за [math]k[/math] шагов.

1. Положить [math]mathbf_1=mathbf_1[/math] .

2. Найти [math]mathbf_2=mathbf_2-alpha_cdot mathbf_1[/math] , где [math]alpha_= frac<langle mathbf_2, mathbf_1rangle><langle mathbf_1, mathbf_1 rangle>[/math] .

3. Найти [math]mathbf_3=mathbf_3-alpha_ mathbf_1-alpha_ mathbf_2[/math] , где [math]alpha_=frac<langle mathbf_3,mathbf_1 rangle><langle mathbf_1, mathbf_1rangle>,

4. Найти [math]mathbf_k=mathbf_k-sum_^alpha_mathbf_i[/math] , где [math]alpha_= frac<langle mathbf_k,mathbf_irangle><langle mathbf_i, mathbf_irangle>,

Поясним процесс ортогонализации. Искомый на втором шаге вектор [math]mathbf_2[/math] представлен в виде линейной комбинации [math]mathbf_2=mathbf_2-alpha mathbf_1[/math] . Коэффициент [math]alpha[/math] подберем так, чтобы обеспечить ортогональность векторов [math]mathbf_2[/math] и [math]mathbf_1[/math] . Приравняем нулю скалярное произведение этих векторов [math]langle mathbf_2,mathbf_1rangle= langle mathbf_2,mathbf_1rangle- alpha langle mathbf_1,mathbf_1rangle=0[/math] . Отсюда получаем, что [math]alpha=alpha_[/math] (см. пункт 2 алгоритма). Подбор коэффициентов [math]alpha_[/math] на j-м шаге алгоритма делается так, чтобы искомый вектор [math]mathbf_j[/math] был ортогонален всем ранее найденным векторам [math]mathbf_1, mathbf_2,ldots,mathbf_[/math] .

1. Векторы, найденные в процессе ортогонализации, обладают следующими свойствами:

а) [math]mathbf_j perp operatorname(mathbf_1,mathbf_2,ldots,mathbf_),quad j=2,ldots,k[/math] ;

б) [math]operatorname(mathbf_1)= operatorname(mathbf_1),quad operatorname(mathbf_1,mathbf_2, ldots,mathbf_)= operatorname(mathbf_1,mathbf_2, ldots,mathbf_),quad j=2,ldots,k[/math] .

Первое свойство следует из свойства 4 ортогональных векторов. Второе свойство следует из того, что каждый вектор системы [math]mathbf_1,mathbf_2,ldots,mathbf_[/math] линейно выражается через векторы [math]mathbf_1,mathbf_2, ldots, mathbf_[/math] , и наоборот.

2. В процессе ортогонализации любой вектор [math]mathbf_j[/math] можно заменить на коллинеарный ему ненулевой вектор [math]lambdacdot mathbf_j[/math] . При этом свойства, перечисленные в пункте 1, не нарушаются.

3. Если система [math]mathbf_1,mathbf_2,ldots, mathbf_[/math] векторов линейно зависима, то в процессе ортогонализации будем получать (на некоторых шагах) нулевые векторы. Действительно, если подсистема math]mathbf_1,mathbf_2,ldots, mathbf_[/math] линейно зависима, то [math]mathbf_jin operatorname (mathbf_1,ldots,mathbf_)[/math] . Тогда вектор [math]mathbf_j=mathbf_j-sum_^alpha_ mathbf_i[/math] одновременно удовлетворяет двум условиям [math]mathbf_jperp operatorname(mathbf_1,ldots, mathbf_)[/math] и [math]mathbf_jin operatorname(mathbf_1,ldots,mathbf_)[/math] . Значит, это нулевой вектор [math]mathbf_i=mathbf[/math] .

Поэтому в данном случае формулы вычисления коэффициентов [math]alpha_[/math] на j-м шаге следует записывать в виде:

В остальном процесс ортогонализации остается неизменным.

4. Процесс ортогонализации можно дополнить процессом нормировки, разделив каждый вектор ортогональной системы [math]mathbf_1, mathbf_2,ldots,mathbf_k[/math] на его длину:

В результате получим ортонормированную систему [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] , отвечающую условию [math]operatorname(mathbf_1, ldots, mathbf_k)= operatorname(mathbf_1,ldots,mathbf_k)[/math] . Если исходная система векторов является линейно зависимой, то среди векторов ортогональной системы [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] будут нулевые. Чтобы получить ортонормированную систему, нулевые векторы следует исключить, а остальные векторы нормировать.

Пример 8.18. Даны системы векторов евклидовых пространств:

а) [math]x=begin1\0end!,quad y=begin2\0end!,quad z=begin0\1end[/math] — элементы пространства [math]mathbb^2[/math] со скалярным произведением (8.26):

p_3(x)=x^2[/math] — элементы пространства [math]C[-1;1][/math] со скалярным произведением (8.28):

Провести ортогонализацию данных векторов.

Решение. а) Заметим, что система векторов [math]x,,y,,z[/math] линейно зависимая, так как [math]x[/math] и [math]y[/math] пропорциональны, поэтому используем процесс ортогонализации Грама–Шмидта с учетом пункта 3 замечаний 8.11.

1. Полагаем [math]mathbf=x[/math] .

Проверим условие ортогональности [math]langle mathbf,mathbfrangle= 2cdot1cdot left(-fracright)+ 1cdot1+ 0cdotleft(-fracright)+0cdot1=0[/math] .

Для получения ортонормированной системы исключаем нулевой вектор [math]mathbf=mathbf[/math] , а остальные нормируем (см. пункт 4 замечаний 8.11):

Таким образом, для системы трех векторов [math]x,,y,,z[/math] построена ортогональная система из трех векторов [math]mathbf,mathbf,mathbf[/math] и ортонормированная система из двух векторов [math]widehat<mathbf>,widehat<mathbf>[/math] . Линейные оболочки этих трех систем совпадают между собой (и со всем пространством [math]mathbb^2[/math] ).

б) 1. Полагаем [math]q_1(x)=p_1(x)=1[/math] .

и находим [math]q_3(x)= x^2-alpha_cdot1-alpha_cdot x=x^2-frac[/math] .

Получили ортогональные многочлены [math]q_1(x)=1,

q_3(x)=x^2-frac[/math] . Выполним нормировку:

Поделиться или сохранить к себе: