Центральный и вписанный угол окружности свойства 8 класс

Центральные и вписанные углы

Центральный и вписанный угол окружности свойства 8 класс

О чем эта статья:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Центральный и вписанный угол окружности свойства 8 класс

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Центральный и вписанный угол окружности свойства 8 класс

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Центральный и вписанный угол окружности свойства 8 класс

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Центральный и вписанный угол окружности свойства 8 класс

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Центральный и вписанный угол окружности свойства 8 класс

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Центральный и вписанный угол окружности свойства 8 класс

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Центральный и вписанный угол окружности свойства 8 класс

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Центральный и вписанный угол окружности свойства 8 класс

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Центральный и вписанный угол окружности свойства 8 класс

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Центральный и вписанный угол окружности свойства 8 класс

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Центральный и вписанный угол окружности свойства 8 класс

ㄥBAC + ㄥBDC = 180°

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Центральный и вписанный угол окружности свойства 8 класс

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Центральный и вписанный угол окружности свойства 8 класс

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Центральный и вписанный угол окружности свойства 8 класс

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный угол в окружности — плоский угол с вершиной в его центре.
Градусная мера дуги окружности — градусная мера соответствующего центрального угла.
Вписанный угол в окружность — угол, вершина которого лежит на окружности^ стороны пересекают эту окружность.

Доказательство теоремы о вписанном угле приводится в «Началах» Эвклида. То, что вписанный угол, опирающийся на диаметр, — прямой, знали вавилоняне еще 4000 лет назад.

Свойства вписанного угла. Радианная мера углов

Центральный и вписанный угол окружности свойства 8 класс

Свойства вписанного угла:
1. Вписанный угoл равен половине дуги, на которую он опирается.
2. Вписанный угoл, опирающийся на диаметр, является прямым.
3. Вписaнные углы, опирающиеся на одну и ту же дугу, равны.
4. Вписaнные углы, опирающиеся на одну и ту же хорду, либо равны, либо их сумма равна 180°.

Радианная мера углов
1 радиан — центральный угол, опирающийся на дугу, равную радиусу окружности. 1 радиан = примерно 57°.
• Угол с вершиной за окружностью (стороны которого пересекают окружность) равен половине разности дуг, лежащих внутри угла.
• Угол,образованный касательной и хордой, с проведенной в точку касания, равен половине дуги, лежащей внутри угла.
• Угол между двумя касательными к окружности, проведенными через одну точку, равен половине разности дуг, ограниченных его сторонами.

Это конспект по теме «Центральный угол. Вписанный угол». Выберите дальнейшие действия:

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Углы, связанные с окружностью

Центральный и вписанный угол окружности свойства 8 классВписанные и центральные углы
Центральный и вписанный угол окружности свойства 8 классУглы, образованные хордами, касательными и секущими
Центральный и вписанный угол окружности свойства 8 классДоказательства теорем об углах, связанных с окружностью

Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Центральный и вписанный угол окружности свойства 8 класс

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Центральный и вписанный угол окружности свойства 8 класс

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголЦентральный и вписанный угол окружности свойства 8 класс
Вписанный уголЦентральный и вписанный угол окружности свойства 8 классВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголЦентральный и вписанный угол окружности свойства 8 классВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголЦентральный и вписанный угол окружности свойства 8 классДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголЦентральный и вписанный угол окружности свойства 8 классВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаЦентральный и вписанный угол окружности свойства 8 класс

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Центральный и вписанный угол окружности свойства 8 класс

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Центральный и вписанный угол окружности свойства 8 класс

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Центральный и вписанный угол окружности свойства 8 класс

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Центральный и вписанный угол окружности свойства 8 класс

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Центральный и вписанный угол окружности свойства 8 класс

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Центральный и вписанный угол окружности свойства 8 класс

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиЦентральный и вписанный угол окружности свойства 8 классЦентральный и вписанный угол окружности свойства 8 класс
Угол, образованный секущими, которые пересекаются вне кругаЦентральный и вписанный угол окружности свойства 8 классЦентральный и вписанный угол окружности свойства 8 класс
Угол, образованный касательной и хордой, проходящей через точку касанияЦентральный и вписанный угол окружности свойства 8 классЦентральный и вписанный угол окружности свойства 8 класс
Угол, образованный касательной и секущейЦентральный и вписанный угол окружности свойства 8 классЦентральный и вписанный угол окружности свойства 8 класс
Угол, образованный двумя касательными к окружностиЦентральный и вписанный угол окружности свойства 8 классЦентральный и вписанный угол окружности свойства 8 класс

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Угол, образованный пересекающимися хордами хордами
Центральный и вписанный угол окружности свойства 8 класс
Формула: Центральный и вписанный угол окружности свойства 8 класс
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Центральный и вписанный угол окружности свойства 8 класс

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Центральный и вписанный угол окружности свойства 8 класс
Формула: Центральный и вписанный угол окружности свойства 8 класс
Угол, образованный касательной и секущей касательной и секущей
Формула: Центральный и вписанный угол окружности свойства 8 класс

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Центральный и вписанный угол окружности свойства 8 класс

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Как понять центральные и вписанные углыСкачать

Как понять центральные и вписанные углы

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Центральный и вписанный угол окружности свойства 8 класс

В этом случае справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Центральный и вписанный угол окружности свойства 8 класс

В этом случае справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Центральный и вписанный угол окружности свойства 8 класс

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Центральный и вписанный угол окружности свойства 8 класс

Центральный и вписанный угол окружности свойства 8 класс

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

💥 Видео

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 классСкачать

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 класс

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс АтанасянСкачать

ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс Атанасян

Геометрия 8 класс. Центральный и вписанный уголСкачать

Геометрия 8 класс. Центральный и вписанный угол

Вписанные и центральные углыСкачать

Вписанные и центральные углы

Центральные и вписанные углы - геометрия 8 классСкачать

Центральные и вписанные углы - геометрия 8 класс

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.
Поделиться или сохранить к себе: