Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.
Центр и радиус вписанной окружности в треугольник через координаты его вершин
Известны координаты вершин треугольника и известный координаты точки. Нужно установить принадлежность точки треугольнику.
Существует несколько способов определения. лежит-ли точка внутри треугольника или снаружи:
1. Метод сравнения площадей — по формуле Герона находятся площади 3-х треугольников которые образует точка с каждой стороной треугольника, далее находится площадь самого треугольника и сравнивается с суммой 3ех предыдущих треугольников, если суммы равны то значит точка принадлежит треугольнику.
2. Метод относительности — выбирается ориентация движения по вершинам треугольника, например по часовой стрелке. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Если точка для всех прямых, лежит с правой стороны, то значит точка принадлежит треугольнику, если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.
3. Метод геометрического луча — из точки пускается луч по какой-либо оси в каком-либо направлении. Вычисляется количество пересечений со сторонами, если кол-во нечётное, то значит точка лежит внутри многоугольника.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Точка пересечения биссектрис
Как найти точку пересечения биссектрис треугольника по координатам его вершин?
Как найти радиус вписанной в треугольник окружности по координатам его вершин?
Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.
Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.
Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.
Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.
Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).
1) Найти точку пересечения биссектрис треугольника ABC.
2) Найти радиус вписанной в треугольник ABC окружности.
3) Составить уравнение вписанной в треугольник ABC окружности.
1) Составим уравнения прямых, содержащих стороны треугольника.
Уравнение прямой AC:
Уравнение прямой BC:
Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:
откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.
A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24 0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.
Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда
уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.
A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24 0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.
Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.
Точку пересечения биссектрис углов B и C найдём из системы уравнений
O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.
2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:
3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:
Видео:Найти центр и радиус окружностиСкачать
Окружность в треугольнике
В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
Пример
В приведенном ниже примере, O является центров окружности.
Метод расчета центра окружности вписанного в треугольник
Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.
Шаг 1 :
Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y
- Средняя точка стороны = x1+x2/2, y1+y2/2
- Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
- Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
- Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)
Шаг 2 :
Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.
- Угол AB (m) = 6-7/6-5 = -1.
- Угол BC (m) = -2-6/2-6 = 2.
- Угол CA (m) = 7+2/5-2 = 3.
Шаг 3 :
Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.
- Угол биссектрисы = -1/угол линии (стороны).
- Угол биссектрисы стороны AB = -1/-1 = 1
- Угол биссектрисы стороны BC = -1/2
- Угол биссектрисы стороны CA = -1/3
Шаг 4 :
После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.
Уравнение центра окружности y-y1 = m(x-x1)
Упростив, мы получим уравнение -x + y = 1
Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.
Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)
Упростив, мы получим уравнение x + 2y = 8
Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)
Упростив, мы получим уравнение x + 3y = 11
Шаг 5 :
Найдем значения x и y решив любые 2 из указанных 3 уравнений.
В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.
🎦 Видео
Всё про углы в окружности. Геометрия | МатематикаСкачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Задание 3 ЕГЭ по математике. Урок 73Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Углы, вписанные в окружность. 9 класс.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Построить описанную окружность (Задача 1)Скачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
65 Вписанная окружность и окружность, проходящая через две вершины и центр вписанной окружностиСкачать
8 класс, 38 урок, Вписанная окружностьСкачать
Уравнение окружности описанной около треугольникаСкачать
Центр вписанной окружности.Скачать
✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать
ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать
Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать
10 класс, 11 урок, Числовая окружностьСкачать
Математика Найти длину окружности, описанной около треугольника, координаты вершин которого АСкачать