Радиус окружности основания цилиндра

Нахождение радиуса цилиндра: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Формулы вычисления радиуса цилиндра

Радиус окружности основания цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

Радиус окружности основания цилиндра

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = π R 2 h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Радиус окружности основания цилиндра

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

S = 2 π Rh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Радиус окружности основания цилиндра

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2 π R 2 + 2 π Rh – S = 0

Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

Радиус окружности основания цилиндра

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Видео:№527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г,Скачать

№527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г,

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Радиус окружности основания цилиндра

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:
Радиус окружности основания цилиндра

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:
Радиус окружности основания цилиндра

Видео:🔴 Радиус основания цилиндра равен 15, а его ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Радиус основания цилиндра равен 15, а его ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Рассчитайте радиус цилиндра

Круг (окружность) — геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).

Формулы для вычисления радиуса круга

Через объем и высоту $R=sqrt<frac>$, где:

V — объем цилиндра

h — высота цилиндра

Через площадь боковой поверхности и высоту $R=frac<S_>$, где:

S — площадь боковой поверхности

h — высота цилиндра

Через площадь полной поверхности и высоту $R=frac<sqrt<(2 pi h)^+8 pi S>-2 pi h>$, где:

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Радиус цилиндра

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2 =πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr 2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

🌟 Видео

Объём цилиндраСкачать

Объём цилиндра

№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересеченСкачать

№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.Скачать

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.

ЕГЭ БАЗА 16 номер Радиус основания цилиндра равен 15, а его образующая равна 14Скачать

ЕГЭ БАЗА 16 номер Радиус основания цилиндра равен 15, а его образующая равна 14

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

№534. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 120Скачать

№534. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 120

11 кл.Егэ. Радиус основания цилиндра равен ,2 высота равна 3 .Найдите площадь боковой поверхности циСкачать

11 кл.Егэ. Радиус основания цилиндра равен ,2 высота равна 3 .Найдите площадь боковой поверхности ци

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

№535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60Скачать

№535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Радиус описанной окружностиСкачать

Радиус описанной окружности

Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Найти радиус основания цилиндраСкачать

Найти радиус основания цилиндра

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Радиус основания цилиндра равен 26. Найти площадь сеченияСкачать

Радиус основания цилиндра равен 26. Найти площадь сечения

Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндраСкачать

Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра
Поделиться или сохранить к себе: