Тройка векторов электромагнитной волны

Виды поляризации электромагнитных волн

В любой электромагнитной волне векторы напряженности электрического поля Е, индукции магнитного поля В и вектор скорости волны и образуют взаимно перпендикулярную правую тройку векторов: Ё±В1и (рис. 19.1).

Тройка векторов электромагнитной волны

Рис. 19.1. Структура электромагнитной волны

При распространении волны векторы В и Е всегда изменяются в пространстве одинаковым образом, описывая одинаковые по форме кривые, но во взаимно перпендикулярных плоскостях. Поэтому достаточно знать, как изменяется в пространстве один из этих векторов, поведение другого будет аналогичным.

Специальными опытами установлено, что действие электромагнитной волны на глаз, фотоприемники и многие другие объекты оказывает электрический вектор Е волны, поэтому его называют также световым вектором волны.

Поляризация электромагнитной волны зависит от поведения ее электрического и магнитного полей в пространстве при распространении волны и определяется видом той кривой, которую описывает проекция электрического вектора Е волны за один период колебания в плоскости наблюдения. Плоскость наблюдения — это плоскость, перпендикулярная направлению распространения волны (см. рис. 19.1), при этом свет должен распространяться к наблюдателю. Ясно, что проекция магнитного вектора В волны описывает в плоскости наблюдения такую же по форме кривую, что и вектор Е , но в перпендикулярном ему направлении. Рассмотрим основные виды поляризации.

Линейная (плоская) поляризация: в процессе распространения волны вектор Е колеблется все время в одной и той же пространственной плоскости (см. рис. 19.1), которую называют плоскостью колебаний вектора Е (иногда также

Тройка векторов электромагнитной волны

Рис. 19.2. Виды поляризации электромагнитных волн: а — линейная (плоская); б — круговая; в — эллиптическая; г — неполяризованная; д — частично поляризованная

плоскостью поляризации волны). Проекция вектора Е на плоскость наблюдения в этом случае будет иметь вид отрезка прямой линии, в связи с чем эту поляризацию и называют линейной или плоской (рис. 19.2, а).

Отметим, что плоскость колебания магнитного вектора волны будет перпендикулярна плоскости колебаний вектора Е .

Круговая (циркулярная) поляризация: вектор Е за один период волны делает полный оборот вокруг направления распространения волны, при этом его длина остается постоянной. В плоскости наблюдения проекция вектора Е описывает круг, что и определяет название такой поляризации. Если вектор вращается по часовой стрелке (волна должна распространяться к наблюдателю), то поляризация называется правой круговой (пр), а если против часовой стрелки, то левой круговой (л) поляризацией (рис. 19.2, б).

Эллиптическая поляризация: вектор Е за один период волны делает полный оборот вокруг направления распространения волны, но при этом его величина изменяется таким образом, что конец его описывает в плоскости наблюдения эллипс. Если для наблюдателя вектор Е вращается по часовой стрелке, то поляризация называется правой (пр), а если против — левой (л) эллиптической (рис. 19.2, в).

Это виды полной поляризации света. Полностью поляризованный свет можно с помощью специальных поляризационных приборов (компенсаторов и фазовых пластинок) преобразовать без уменьшения интенсивности из одной формы в другую (например линейно поляризованный свет в цирку- лярно поляризованный, и наоборот).

Естественный свет — свет, испускаемый обычными источниками, т.е. солнцем, пламенем, электрической лампочкой; он является неполяризованным (рис. 19.2, г). Такой свет можно рассматривать как совокупность множества линейно поляризованных волн с одинаковыми амплитудами и всеми возможными ориентациями вектора Е в плоскости наблюдения. По своим поляризационным свойствам такой свет существенно отличается и от линейно поляризованного, и от циркулярно поляризованного света.

Частично поляризованный свет можно рассматривать как совокупность линейно поляризованного и естественного света (рис. 19.2, д) либо как совокупность множества линейно поляризованных волн с различными направлениями колебаний вектора Е, амплитуда которого неодинакова в различных направлениях. Поэтому концы этих векторов лежат не на окружности, как у естественного света, а на эллипсе. Форма такого эллипса может быть разной: от почти круговой (такой свет по своим свойствам близок к естественному) до сильно вытянутой (близок к линейно поляризованному). Поэтому для количественного описания частично поляризованного света вводится специальный параметр — степень поляризации р, который может принимать значения от нуля до единицы:

Тройка векторов электромагнитной волны

где 7тах и 7min — интенсивность линейно поляризованных волн вдоль большой и малой осей эллипса.

Видео:Парадокс электромагнитной волныСкачать

Парадокс электромагнитной волны

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды (Тройка векторов электромагнитной волны) и токи (j = 0):

Тройка векторов электромагнитной волны

Тройка векторов электромагнитной волны

Величины Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волны— электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Тройка векторов электромагнитной волны

Постоянные Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волныхарактеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волныэлектромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волны.

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

Тройка векторов электромагнитной волны

При этом воспользуемся доказываемой в курсе математики формулой:

Тройка векторов электромагнитной волны

где Тройка векторов электромагнитной волны— введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Тройка векторов электромагнитной волны

Получаем в итоге:

Тройка векторов электромагнитной волны

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

Тройка векторов электромагнитной волны

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

Тройка векторов электромагнитной волны

Тройка векторов электромагнитной волны

и вводя показатель преломления среды

Тройка векторов электромагнитной волны

запишем уравнение для вектора напряженности электрического поля в виде:

Тройка векторов электромагнитной волны

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где vфазовая скорость света в среде:

Тройка векторов электромагнитной волны

Взяв ротор от обеих частей уравнения Максвелла

Тройка векторов электромагнитной волны

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Тройка векторов электромагнитной волны

Полученные волновые уравнения для Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волныозначают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

Тройка векторов электромагнитной волны

В отсутствие среды (при Тройка векторов электромагнитной волны) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Тройка векторов электромагнитной волны

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

Тройка векторов электромагнитной волны

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

Тройка векторов электромагнитной волны

Дифференцирование плоских волн по времени дает:

Тройка векторов электромагнитной волны

Тогда из уравнений Максвелла следует:

Тройка векторов электромагнитной волны

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Тройка векторов электромагнитной волны

Далее, ни у Тройка векторов электромагнитной волны, ни у Тройка векторов электромагнитной волнынет компонент параллельных оси х:

Тройка векторов электромагнитной волны

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Тогда можно выбрать координатные оси так, чтобы вектор Тройка векторов электромагнитной волныбыл направлен вдоль оси у (рис. 2.27):

Тройка векторов электромагнитной волны

Тройка векторов электромагнитной волны

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Тройка векторов электромагнитной волны

Отсюда следует, что вектор Тройка векторов электромагнитной волнынаправлен вдоль оси z:

Тройка векторов электромагнитной волны

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Тройка векторов электромагнитной волны

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

Тройка векторов электромагнитной волны

а также связь амплитуд колебаний полей:

Тройка векторов электромагнитной волны

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.

Тройка векторов электромагнитной волны

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Тройка векторов электромагнитной волны

Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:

Тройка векторов электромагнитной волны

Подставим эти выражения в выражение для фазы Тройка векторов электромагнитной волны, чтобы получить фазу Тройка векторов электромагнитной волныволны в движущейся системе отсчета:

Тройка векторов электромагнитной волны

Это выражение можно записать как

Тройка векторов электромагнитной волны

где Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волны— циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Тройка векторов электромагнитной волны

Для электромагнитной волны в вакууме

Тройка векторов электромагнитной волны

Пусть направление распространения волны составляет в первой системе отсчета угол Тройка векторов электромагнитной волныс осью х:

Тройка векторов электромагнитной волны

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Тройка векторов электромагнитной волны

Это и есть формула Доплера для электромагнитных волн.

Если Тройка векторов электромагнитной волны, то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Тройка векторов электромагнитной волны

Если Тройка векторов электромагнитной волны, то наблюдатель приближается к источнику и частота излучения для него увеличивается:

Тройка векторов электромагнитной волны

При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем Тройка векторов электромагнитной волны:

Тройка векторов электромагнитной волны

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

Тройка векторов электромагнитной волны

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время Тройка векторов электромагнитной волныплощадка получила от волны энергию Тройка векторов электромагнитной волны. Тогда переданный площадке импульс равен

Тройка векторов электромагнитной волны

На площадку действует со стороны волны сила

Тройка векторов электромагнитной волны

Давление Р, оказываемое волной, равно

Тройка векторов электромагнитной волны

Если средняя плотность энергии в волне равна , то на площадь А за время Тройка векторов электромагнитной волныпопадет энергия из объема Тройка векторов электромагнитной волныи

Тройка векторов электромагнитной волны

Отсюда находим давление электромагнитной волны (света):

Тройка векторов электромагнитной волны

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Тройка векторов электромагнитной волны

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Видео:Раскрытие тайн электромагнитной волныСкачать

Раскрытие тайн электромагнитной волны

ПЛОСКАЯ МОНОХРОМАТИЧЕСКАЯ ВОЛНА, ЕЕ ПАРАМЕТРЫ И СВОЙСТВА

СВЕТ КАК ЭЛЕКТРОМАГНИТНАЯ ВОЛНА

Физическая природа света.

В рамках волновой теории свет представляет собой электромагнитные волны. Под светом в настоящее время понимают электромагнитное излучение оптического диапазона, включающего видимое, инфракрасное (ИК) и ультрафиолетовое (УФ) излучение.

Границы оптического диапазона, а также границы между его участками установлены на основе экспериментальных данных и не являются абсолютно точными. Диапазон видимых длин волн: 380 нм = Тройка векторов электромагнитной волны=760 нм, частота колебаний порядка Тройка векторов электромагнитной волныГц, период колебаний Тройка векторов электромагнитной волныс (фемтосекунды).

Электромагнитная волна – колебания напряженности электрического и магнитного полей, распространяющиеся в пространстве с конечной скоростью.

Математическое описание оптических явлений строится на основе базовых уравнений электромагнетизма – уравнениях Максвелла.

Из уравнений Максвелла следует

1) факт существования электромагнитных волн,

2) распространение электромагнитных волн в вакууме со скоростью

Тройка векторов электромагнитной волны, (1)

3) распространение электромагнитных волн в однородной изотропной среде со скоростью

Тройка векторов электромагнитной волны(2)

4) Частные решения в виде плоской и сферической волн

ПЛОСКАЯ МОНОХРОМАТИЧЕСКАЯ ВОЛНА, ЕЕ ПАРАМЕТРЫ И СВОЙСТВА

Плоская монохроматическая волна– частное решение Уравнений Максвелла. Напряженность электрического поля такой волны описывается выражением:

Тройка векторов электромагнитной волны(3)

– волна распространяется вдоль оси z,

Тройка векторов электромагнитной волны(4)

– волна распространяется в направлении, задаваемом вектором Тройка векторов электромагнитной волны. Здесь Тройка векторов электромагнитной волныволновой вектор, длина которого равна волновому числу, а направление совпадает с направлением распространения волны (т.е. с нормалью к волновому фронту).

В комплексном виде

Тройка векторов электромагнитной волны. (5)

Параметры плоской монохроматической волны. (см. рис 1).

Тройка векторов электромагнитной волны– амплитуда волны, в общем случае, комплексная.

Тройка векторов электромагнитной волны— фаза волны,

Тройка векторов электромагнитной волны– начальная фаза волны,

Тройка векторов электромагнитной волны– циклическая частота волны,

Тройка векторов электромагнитной волны, где Тройка векторов электромагнитной волны— частота волны (Гц),

Тройка векторов электромагнитной волны, где Тройка векторов электромагнитной волны– период волны,

Тройка векторов электромагнитной волны– волновой вектор, направлен в направлении распространения волны (в частном случае – вдоль оси z), перпендикулярно к волновой поверхности (поверхности равных фаз).

Тройка векторов электромагнитной волны— волновое число, Тройка векторов электромагнитной волны,

Тройка векторов электромагнитной волны— длина волны или ее пространственный период, υ – фазовая скорость волны (скорость распространения волнового фронта волны)

Тройка векторов электромагнитной волны,

где n — показатель преломления среды,
Тройка векторов электромагнитной волны— длина волны в вакууме,
величина Δ, равная произведению показателя преломления на геометрическую длину пути Δ = nz , называется оптической длиной пути.

Тройка векторов электромагнитной волныТройка векторов электромагнитной волны

Свойства плоской монохроматической волны

1. Волна монохроматическая – колебания напряженностей электрического и магнитного полей происходят на одной частоте, т.е гармонические (по закону sin, cos).

2. Волна плоская –волновая поверхность (поверхность равных фаз, или поверхность постоянной фазы) – плоскость(см. рис 2), т.е. удовлетворяет уравнению плоскости: z=const (в общем случае Тройка векторов электромагнитной волны). Волновой фронт – это волновая поверхность на границе между возмущенной и невозмущенной частью пространства.

3. Поперечность электромагнитной волны – колебания векторов Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волныперпендикулярны направлению распространения волны Тройка векторов электромагнитной волны(см. рис. 2, 3, 4);

Тройка векторов электромагнитной волныТройка векторов электромагнитной волны

Рис. 2. Волновой фронт (плоскость) и структура плоской монохроматической волны (правая тройка векторов)

Тройка векторов электромагнитной волныТройка векторов электромагнитной волны

Рис.3. Волновой фронт (сфера) и структура сферической монохроматической волны (правая тройка векторов)

4. Правая тройка векторов – векторы Тройка векторов электромагнитной волны, образуют правую ортогоналъную тройку векторов(cм. рис. 2, 3.);

5. Связь между векторами Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волны– синфазность колебаний этих векторов(см. рис. 4);

Тройка векторов электромагнитной волныТройка векторов электромагнитной волны

Рис. 4. Синфазность колебаний напряженностей электрического и магнитного полей

6. Связь между амплитудами векторов Тройка векторов электромагнитной волныи Тройка векторов электромагнитной волны:

Тройка векторов электромагнитной волны;(6)

7. Поляризация электромагнитной волны. Поляризация – свойство света, обусловленное поперечностью электромагнитных волн. Поляризация характеризует структуру колебаний вектора напряженности электрического поля в плоскости, перпендикулярной направлению распространения волны (cм. рис. 5). Конец вектора Тройка векторов электромагнитной волныв этой плоскости может описывать различные фигуры (линию, эллипс, круг). Если с течением времени эти фигуры не изменяются, свет полностью поляризован (линейно, эллиптически, циркулярно). Если состояния поляризации (фигуры) с течением времени изменяются случайным образом, свет не поляризован;

Тройка векторов электромагнитной волны

Рис. 5. Состояния поляризации плоской монохроматической волны

8. Интенсивность плоской монохроматической волны пропорциональна квадрату ее амплитуды;

9. Связь между волной и лучом.Световые лучи – это нормали к волновой поверхности (поверхности постоянной фазы волны) (cм. рис 6).

Тройка векторов электромагнитной волныТройка векторов электромагнитной волны

Рис. 6. Волновые поверхности в различные моменты времени и световые лучи:
в случае плоской (cлева) и сферической (справа) волн

🎥 Видео

Электромагнитные волны в 4K (Ultra HD) 60 FPS. Как выглядит электромагнитная волнаСкачать

Электромагнитные волны в 4K (Ultra HD) 60 FPS. Как выглядит электромагнитная волна

Физика 11 класс (Урок№10 - Электромагнитные волны.)Скачать

Физика 11 класс (Урок№10 - Электромагнитные волны.)

Электромагнитные волны | Физика 9 класс #44 | ИнфоурокСкачать

Электромагнитные волны | Физика 9 класс #44 | Инфоурок

Что такое электромагнитная волна | Физика 11 класс #19 | ИнфоурокСкачать

Что такое электромагнитная волна | Физика 11 класс #19 | Инфоурок

Урок 384. Излучение электромагнитных волн.Скачать

Урок 384. Излучение электромагнитных волн.

Урок №45. Электромагнитные волны. Радиоволны.Скачать

Урок №45. Электромагнитные волны. Радиоволны.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ЧТО ЭТО? [Радиолюбитель TV 6]Скачать

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ЧТО ЭТО? [Радиолюбитель TV 6]

Электромагнитные волны. 11 класс.Скачать

Электромагнитные волны. 11 класс.

Урок 385. Опыты Герца. Свойства электромагнитных волнСкачать

Урок 385. Опыты Герца. Свойства электромагнитных волн

Свойства электромагнитных волн | Физика 11 класс #21 | ИнфоурокСкачать

Свойства электромагнитных волн | Физика 11 класс #21 | Инфоурок

Электромагнитные волны НАГЛЯДНО. ТВ урок.Скачать

Электромагнитные волны НАГЛЯДНО. ТВ урок.

Опыты по физике. Излучение и прием электромагнитных волнСкачать

Опыты по физике. Излучение и прием электромагнитных волн

Интерференция электромагнитной волныСкачать

Интерференция электромагнитной волны

Билет №34 "Электромагнитные волны"Скачать

Билет №34 "Электромагнитные волны"

Электромагнитные волныСкачать

Электромагнитные волны

4.9 Поляризация электромагнитных волнСкачать

4.9 Поляризация электромагнитных волн

Электромагнитная волна. Опыт ГерцаСкачать

Электромагнитная волна. Опыт Герца
Поделиться или сохранить к себе: