Треугольники с одинаковым основанием

Подобные треугольники

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Треугольники с одинаковым основанием

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Треугольники с одинаковым основанием

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Треугольники с одинаковым основанием II признак подобия треугольников

Треугольники с одинаковым основанием

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Треугольники с одинаковым основанием

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия. Треугольники с одинаковым основанием
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

Треугольники с одинаковым основанием

2. Треугольники Треугольники с одинаковым основаниеми Треугольники с одинаковым основанием, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – Треугольники с одинаковым основанием

Треугольники с одинаковым основанием

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Треугольники с одинаковым основанием

Треугольники с одинаковым основанием

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Признаки равенства треугольников

Треугольники с одинаковым основанием

О чем эта статья:

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Первый признак равенства треугольников

Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.

Давайте рассмотрим три признака равенства треугольников.

Теорема 1. Равенство треугольников по двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Треугольники с одинаковым основанием

При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.

Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.

Значит, происходит совмещение вершин В и В1, С и С1.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Второй признак равенства треугольников

Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Треугольники с одинаковым основанием

Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.

Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.

AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.

CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.

Вершина B совпадает с вершиной B1.

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Третий признак равенства треугольников

Теорема 3. Равенство треугольников по трем сторонам.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Треугольники с одинаковым основанием

Доказательство 3 признака равенства треугольников:

Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.

Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.

Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.

  1. Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
    Треугольники с одинаковым основанием
  2. Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
    Треугольники с одинаковым основанием
  3. Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
    Треугольники с одинаковым основанием
  4. Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
    Треугольники с одинаковым основанием
  5. Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
    Треугольники с одинаковым основанием

Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Основные свойства площадей треугольников

Факт 1.
(bullet) Средние линии треугольника разбивают его на 4 равных треугольника.
Соответственно, площади этих треугольников равны.

Треугольники с одинаковым основанием

Факт 2.
(bullet) Медиана треугольника делит его на два треугольника, равных по площади (равновеликих).

Треугольники с одинаковым основанием

Факт 3.
(bullet) Все 3 медианы треугольника делят его на 6 равновеликих треугольников.

Треугольники с одинаковым основанием

Факт 4.
(bullet) Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.

Треугольники с одинаковым основанием

Факт 5.
(bullet) Площади треугольников, имеющих одинаковое основание, относятся как высоты, проведенные к этим основаниям.

Треугольники с одинаковым основанием

Факт 6.
(bullet) Площади треугольников, имеющих одинаковую высоту, относятся как основания, к которым проведена эта высота.

Треугольники с одинаковым основанием

Факт 7.
(bullet) Если прямые (p) и (q) параллельны, то Треугольники с одинаковым основанием

Факт 8.
(bullet) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
(bullet) Отношение периметров подобных треугольников равно коэффициенту подобия.

🔥 Видео

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭ

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Геометрия Раскрыта тайна площадей треугольниковСкачать

Геометрия Раскрыта тайна площадей треугольников

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭ

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Степень с натуральным показателем. Свойства степеней. 7 класс.Скачать

Степень с натуральным показателем. Свойства степеней. 7 класс.
Поделиться или сохранить к себе: